forked from jiewwantan/StarTrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_preprocessing.py
753 lines (630 loc) · 31.9 KB
/
data_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
# --------------------------------------- IMPORT LIBRARIES -------------------------------------------
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
import random
import math
import warnings
import quandl
import time
warnings.filterwarnings("ignore")
from feature_select import FeatureSelector
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import Normalizer
from sklearn.preprocessing import MinMaxScaler
import talib as tb
import matplotlib.pyplot as plt
from matplotlib import gridspec
# --------------------------------------- GLOBAL PARAMETERS -------------------------------------------
# Set total fund pool
TRAIN_PORTION = 0.9
ACCOUNT_FUND = 100000
ALLOCATION_RATIO = 0.2
SINGLE_TRADING_FUND = ACCOUNT_FUND * ALLOCATION_RATIO
PRICE_IMPACT = 0.1
# Start and end period of historical data in question
START_TRAIN = datetime(2000, 1, 1)
END_TRAIN = datetime(2017, 2, 12)
START_TEST = datetime(2017, 2, 12)
END_TEST = datetime(2019, 2, 22)
# DJIA component stocks
DJI = ['MMM', 'AXP', 'AAPL', 'BA', 'CAT', 'CVX', 'CSCO', 'KO', 'DIS', 'XOM', 'GE', 'GS',
'HD', 'IBM', 'INTC', 'JNJ', 'JPM', 'MCD', 'MRK', 'MSFT', 'NKE', 'PFE', 'PG', 'UTX',
'UNH', 'VZ', 'WMT']
DJI_N = ['3M','American Express', 'Apple','Boeing','Caterpillar','Chevron','Cisco Systems','Coca-Cola','Disney'
,'ExxonMobil','General Electric','Goldman Sachs','Home Depot','IBM','Intel','Johnson & Johnson',
'JPMorgan Chase','McDonalds','Merck','Microsoft','NIKE','Pfizer','Procter & Gamble',
'United Technologies','UnitedHealth Group','Verizon Communications','Wal Mart']
CONTEXT_DATA = ['^GSPC', '^DJI', '^IXIC', '^RUT', 'SPY', 'QQQ', '^VIX', 'GLD', '^TYX', '^TNX' , 'SHY', 'SHV']
CONTEXT_DATA_N = ['S&P 500', 'Dow Jones Industrial Average', 'NASDAQ Composite', 'Russell 2000', 'SPDR S&P 500 ETF',
'Invesco QQQ Trust', 'CBOE Volatility Index', 'SPDR Gold Shares', 'Treasury Yield 30 Years',
'CBOE Interest Rate 10 Year T Note', 'iShares 1-3 Year Treasury Bond ETF', 'iShares Short Treasury Bond ETF']
random.seed(633)
RANDOM_STOCK = random.sample(DJI, 1)
ADD_STOCKS = 4
#13 WEEK TREASURY BILL (^IRX)
# https://finance.yahoo.com/quote/%5EIRX?p=^IRX&.tsrc=fin-srch
RISK_FREE_RATE = ((1+0.02383)**(1.0/252))-1 # Assuming 1.43% risk free rate divided by 360 to get the daily risk free rate.
MAR = 0.05
# ------------------------------------------------ CLASSES --------------------------------------------
class DataRetrieval:
"""
This class prepares data by loading historical data from pre-saved data.
"""
def __init__(self):
# Initiate component data downloads
self._dji_components_data()
def _get_daily_data(self, symbol):
"""
Load pre-saved historical data stock by stock.
"""
daily_price = pd.read_csv("{}{}{}".format('./data/', symbol, '.csv'), index_col='Date', parse_dates=True)
return daily_price
def _dji_components_data(self):
"""
This function retrieve all components data and assembles the required OHLCV data into respective data
"""
for i in DJI + CONTEXT_DATA:
print("Loading {}'s historical data".format((DJI + CONTEXT_DATA_N)[(DJI + CONTEXT_DATA).index(i)]))
daily_price = self._get_daily_data(i)
if i == (DJI + CONTEXT_DATA)[0]:
self.components_df_o = pd.DataFrame(index=daily_price.index, columns=(DJI + CONTEXT_DATA))
self.components_df_c = pd.DataFrame(index=daily_price.index, columns=(DJI + CONTEXT_DATA))
self.components_df_h = pd.DataFrame(index=daily_price.index, columns=(DJI + CONTEXT_DATA))
self.components_df_l = pd.DataFrame(index=daily_price.index, columns=(DJI + CONTEXT_DATA))
self.components_df_v = pd.DataFrame(index=daily_price.index, columns=(DJI + CONTEXT_DATA))
# Since this span more than 10 years of data, many corporate actions could have happened,
# adjusted closing price is used instead
self.components_df_o[i] = daily_price["Open"]
self.components_df_c[i] = daily_price["Adj Close"]
self.components_df_h[i] = daily_price["High"]
self.components_df_l[i] = daily_price["Low"]
self.components_df_v[i] = daily_price["Volume"]
else:
self.components_df_o[i] = daily_price["Open"]
self.components_df_c[i] = daily_price["Adj Close"]
self.components_df_h[i] = daily_price["High"]
self.components_df_l[i] = daily_price["Low"]
self.components_df_v[i] = daily_price["Volume"]
def get_dailyprice_df(self):
"""
Gets all stocks' close price and separates them into train and test set.
"""
self.dow_stocks_test = self.components_df_c.loc[START_TEST:END_TEST][DJI]
self.dow_stocks_train = self.components_df_c.loc[START_TRAIN:END_TRAIN][DJI]
def get_all(self):
"""
Response to external request to get all stock price in train and test set.
"""
self.get_dailyprice_df()
return self.dow_stocks_train, self.dow_stocks_test
def technical_indicators_df(self, daily_data):
"""
Assemble a dataframe of technical indicator series for a single stock
"""
o = daily_data['Open'].values
c = daily_data['Close'].values
h = daily_data['High'].values
l = daily_data['Low'].values
v = daily_data['Volume'].astype(float).values
# define the technical analysis matrix
# Most data series are normalized by their series' mean
ta = pd.DataFrame()
ta['MA5'] = tb.MA(c, timeperiod=5) / tb.MA(c, timeperiod=5).mean()
ta['MA10'] = tb.MA(c, timeperiod=10) / tb.MA(c, timeperiod=10).mean()
ta['MA20'] = tb.MA(c, timeperiod=20) / tb.MA(c, timeperiod=20).mean()
ta['MA60'] = tb.MA(c, timeperiod=60) / tb.MA(c, timeperiod=60).mean()
ta['MA120'] = tb.MA(c, timeperiod=120) / tb.MA(c, timeperiod=120).mean()
ta['MA5'] = tb.MA(v, timeperiod=5) / tb.MA(v, timeperiod=5).mean()
ta['MA10'] = tb.MA(v, timeperiod=10) / tb.MA(v, timeperiod=10).mean()
ta['MA20'] = tb.MA(v, timeperiod=20) / tb.MA(v, timeperiod=20).mean()
ta['ADX'] = tb.ADX(h, l, c, timeperiod=14) / tb.ADX(h, l, c, timeperiod=14).mean()
ta['ADXR'] = tb.ADXR(h, l, c, timeperiod=14) / tb.ADXR(h, l, c, timeperiod=14).mean()
ta['MACD'] = tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0] / \
tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0].mean()
ta['RSI'] = tb.RSI(c, timeperiod=14) / tb.RSI(c, timeperiod=14).mean()
ta['BBANDS_U'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0].mean()
ta['BBANDS_M'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1].mean()
ta['BBANDS_L'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2] / \
tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2].mean()
ta['AD'] = tb.AD(h, l, c, v) / tb.AD(h, l, c, v).mean()
ta['ATR'] = tb.ATR(h, l, c, timeperiod=14) / tb.ATR(h, l, c, timeperiod=14).mean()
ta['HT_DC'] = tb.HT_DCPERIOD(c) / tb.HT_DCPERIOD(c).mean()
ta["High/Open"] = h / o
ta["Low/Open"] = l / o
ta["Close/Open"] = c / o
self.ta = ta
def label(self, df, seq_length):
return (df['Returns'] > 0).astype(int)
def preprocessing(self, symbol):
"""
Preprocess all stock data into a big dataframe of features with the help of a feature selector , also creates label data
"""
print("\n")
print("Preprocessing {} & its technical data".format(symbol))
print("============================================")
self.daily_data = pd.DataFrame()
self.daily_data['Returns'] = pd.Series(
(self.components_df_c[symbol] / self.components_df_c[symbol].shift(1) - 1) * 100,
index=self.components_df_c[symbol].index)
self.daily_data['Open'] = self.components_df_o[symbol]
self.daily_data['Close'] = self.components_df_c[symbol]
self.daily_data['High'] = self.components_df_h[symbol]
self.daily_data['Low'] = self.components_df_l[symbol]
self.daily_data['Volume'] = self.components_df_v[symbol].astype(float)
seq_length = 3
self.technical_indicators_df(self.daily_data)
self.X = self.daily_data[['Open', 'Close', 'High', 'Low', 'Volume']] / self.daily_data[
['Open', 'Close', 'High', 'Low', 'Volume']].mean()
self.y = self.label(self.daily_data, seq_length)
X_shift = [self.X]
for i in range(1, seq_length):
shifted_df = self.daily_data[['Open', 'Close', 'High', 'Low', 'Volume']].shift(i)
X_shift.append(shifted_df / shifted_df.mean())
ohlc = pd.concat(X_shift, axis=1)
ohlc.columns = sum([[c + 'T-{}'.format(i) for c in ['Open', 'Close', 'High', 'Low', 'Volume']] \
for i in range(seq_length)], [])
self.ta.index = ohlc.index
self.X = pd.concat([ohlc, self.ta], axis=1)
self.Xy = pd.concat([self.X, self.y], axis=1)
fs = FeatureSelector(data=self.X, labels=self.y)
fs.identify_all(selection_params={'missing_threshold': 0.6,
'correlation_threshold': 0.9,
'task': 'regression',
'eval_metric': 'auc',
'cumulative_importance': 0.99})
self.X_fs = fs.remove(methods='all', keep_one_hot=True)
return self.X_fs
def get_feature_dataframe(self, selected_stock):
"""
Get the preprocessed dataframe and extract only the stocks in interest. Returns a smaller dataframe
"""
self.feature_df = pd.DataFrame()
for s in selected_stock:
if s == selected_stock[0]:
df = self.preprocessing(s)
df.columns = [str(s) + '_' + str(col) for col in df.columns]
self.feature_df = df
else:
df = self.preprocessing(s)
df.columns = [str(s) + '_' + str(col) for col in df.columns]
self.feature_df = pd.concat([self.feature_df, df], axis=1)
return self.feature_df
def get_adj_close(self, selected):
"""
Get a 3D dataframe of Adjusted close price from Quandl.
"""
# get adjusted closing prices of 5 selected companies with Quandl
quandl.ApiConfig.api_key = 'CxU5-dDyxppBFzVgGG6z'
data = quandl.get_table('WIKI/PRICES', ticker=selected,
qopts={'columns': ['date', 'ticker', 'adj_close']},
date={'gte': START_TRAIN, 'lte': END_TRAIN}, paginate=True)
return data
class MathCalc:
"""
This class performs all the mathematical calculations
"""
@staticmethod
def calc_return(period):
"""
This function computes the return of a series
"""
period_return = period / period.shift(1) - 1
return period_return[1:len(period_return)]
@staticmethod
def calc_monthly_return(series):
"""
This function computes the monthly return
"""
return MathCalc.calc_return(series.resample('M').last())
@staticmethod
def positive_pct(series):
"""
This function calculates the probably of positive values from a series of values.
"""
return (float(len(series[series > 0])) / float(len(series)))*100
@staticmethod
def calc_yearly_return(series):
"""
This function computes the yearly return
"""
return MathCalc.calc_return(series.resample('AS').last())
@staticmethod
def max_drawdown(r):
"""
This function calculates maximum drawdown occurs in a series of cummulative returns
"""
dd = r.div(r.cummax()).sub(1)
maxdd = dd.min()
return round(maxdd, 2)
@staticmethod
def calc_lake_ratio(series):
"""
This function computes lake ratio
"""
water = 0
earth = 0
series = series.dropna()
water_level = []
for i, s in enumerate(series):
if i == 0:
peak = s
else:
peak = np.max(series[0:i])
water_level.append(peak)
if s < peak:
water = water + peak - s
earth = earth + s
return water / earth
@staticmethod
def calc_gain_to_pain(daily_series):
"""
This function computes the gain to pain ratio given a series of cummulative returns
"""
try:
monthly_returns = MathCalc.calc_monthly_return(daily_series.dropna())
sum_returns = monthly_returns.sum()
sum_neg_months = abs(monthly_returns[monthly_returns < 0].sum())
gain_to_pain = sum_returns / sum_neg_months
except:
gain_to_pain = 1.0
# print "Gain to Pain ratio: ", gain_to_pain
return gain_to_pain
@staticmethod
def sharpe_ratio(returns):
"""
Calculates Sharpe ratio from a series of returns.
"""
return ((returns.mean() - RISK_FREE_RATE) / returns.std()) * np.sqrt(252)
@staticmethod
def downside_deviation(returns):
"""
This method returns a lower partial moment of the returns. Create an array he same length as returns containing the minimum return threshold
"""
#
target = 0
df = pd.DataFrame(data=returns, columns=["Returns"], index=returns.index)
df["Downside Returns"] = 0
df.loc[df["Returns"] < target, "Downside Returns"] = df["Returns"] ** 2
expected_return = df["Returns"].mean()
return np.sqrt(df["Downside Returns"].mean())
@staticmethod
def sortino_ratio(returns):
"""
Calculates Sortino ratio from a series of returns.
"""
return ((returns.mean() - RISK_FREE_RATE) / MathCalc.downside_deviation(returns))* np.sqrt(252)
@staticmethod
def calc_kpi(portfolio):
"""
This function calculates individual portfolio KPI related its risk profile
"""
kpi = pd.DataFrame(index=['KPI'], columns=['Avg. monthly return', 'Pos months pct', 'Avg yearly return',
'Max monthly dd', 'Max drawdown', 'Lake ratio', 'Gain to Pain',
'Sharpe ratio', 'Sortino ratio'])
kpi['Avg. monthly return'].iloc[0] = MathCalc.calc_monthly_return(portfolio['Total asset']).mean() * 100
kpi['Pos months pct'].iloc[0] = MathCalc.positive_pct(portfolio['Returns'])
kpi['Avg yearly return'].iloc[0] = MathCalc.calc_yearly_return(portfolio['Total asset']).mean() * 100
kpi['Max monthly dd'].iloc[0] = MathCalc.max_drawdown(MathCalc.calc_monthly_return(portfolio['CumReturns']))
kpi['Max drawdown'].iloc[0] = MathCalc.max_drawdown(MathCalc.calc_return(portfolio['CumReturns']))
kpi['Lake ratio'].iloc[0] = MathCalc.calc_lake_ratio(portfolio['Total asset'])
kpi['Gain to Pain'].iloc[0] = MathCalc.calc_gain_to_pain(portfolio['Total asset'])
kpi['Sharpe ratio'].iloc[0] = MathCalc.sharpe_ratio(portfolio['Returns'])
kpi['Sortino ratio'].iloc[0] = MathCalc.sortino_ratio(portfolio['Returns'])
return kpi
@staticmethod
def assemble_cum_returns(returns_buyhold, returns_sharpe_optimized_buyhold, returns_minvar_optimized_buyhold):
"""
This function assembles cumulative returns of all portfolios.
"""
cum_returns = pd.DataFrame()
cum_returns['BuyHold 5 Non-corr stocks'] = returns_buyhold
cum_returns['BuyHold Sharpe-optimized'] = returns_sharpe_optimized_buyhold
cum_returns['BuyHold MinVar-optimized'] = returns_minvar_optimized_buyhold
return cum_returns
@staticmethod
def assemble_returns(returns_buyhold, returns_sharpe_optimized_buyhold, returns_minvar_optimized_buyhold):
"""
This function assembles returns of all portfolios.
"""
returns = pd.DataFrame()
returns['BuyHold 5 Non-corr stocks'] = returns_buyhold
returns['BuyHold Sharpe-optimized'] = returns_sharpe_optimized_buyhold
returns['BuyHold MinVar-optimized'] = returns_minvar_optimized_buyhold
return returns
@staticmethod
def colrow(i):
"""
This function calculate the row and columns index number based on the total number of subplots in the plot.
Return:
row: axis's row index number
col: axis's column index number
"""
# Do odd/even check to get col index number
if i % 2 == 0:
col = 0
else:
col = 1
# Do floor division to get row index number
row = i // 2
return col, row
class Trading:
"""
This class performs trading and all other functions related to trading
"""
def __init__(self, dow_stocks_train, dow_stocks_test, dow_stocks_volume):
self._dow_stocks_test = dow_stocks_test
self.dow_stocks_train = dow_stocks_train
self.daily_v = dow_stocks_volume
self.remaining_stocks()
@staticmethod
def slippage_price(price, stock_quantity, day_volume):
"""
This function performs slippage price calculation using Zipline's volume share model
https://www.zipline.io/_modules/zipline/finance/slippage.html
"""
volumeShare = stock_quantity / float(day_volume)
impactPct = volumeShare ** 2 * PRICE_IMPACT
if stock_quantity > 0:
slipped_price = price * (1 + impactPct)
else:
slipped_price = price * (1 - impactPct)
return slipped_price
@staticmethod
def commission(num_share, share_value):
"""
This function computes commission fee of every trade
https://www.interactivebrokers.com/en/index.php?f=1590&p=stocks1
"""
trade_value = num_share * share_value
max_comm_fee = 0.01 * trade_value
comm_fee = 0.005 * num_share
if max_comm_fee < comm_fee:
comm_fee = max_comm_fee
elif comm_fee <= max_comm_fee and comm_fee > 1.0:
pass
elif comm_fee < 1.0 and num_share > 0:
comm_fee = 1.0
elif num_share == 0:
comm_fee = 0.0
return comm_fee
def find_efficient_frontier(self, data, selected):
"""
Find efficient frontier of a portfolio of stocks.
Returns the stock weights for Sharpe ratio and minimum variance optimized portfolios.
"""
# reorganise data pulled by setting date as index with
# columns of tickers and their corresponding adjusted prices
clean = data.set_index('date')
table = clean.pivot(columns='ticker')
# calculate daily and annual returns of the stocks
returns_daily = table.pct_change()
returns_annual = returns_daily.mean() * 250
# get daily and covariance of returns of the stock
cov_daily = returns_daily.cov()
cov_annual = cov_daily * 250
# empty lists to store returns, volatility and weights of imiginary portfolios
port_returns = []
port_volatility = []
sharpe_ratio = []
stock_weights = []
# set the number of combinations for imaginary portfolios
num_assets = len(selected)
num_portfolios = 50000
# set random seed for reproduction's sake
np.random.seed(36)
# populate the empty lists with each portfolios returns,risk and weights
for single_portfolio in range(num_portfolios):
weights = np.random.random(num_assets)
weights /= np.sum(weights)
returns = np.dot(weights, returns_annual)
volatility = np.sqrt(np.dot(weights.T, np.dot(cov_annual, weights)))
sharpe = returns / volatility
sharpe_ratio.append(sharpe)
port_returns.append(returns)
port_volatility.append(volatility)
stock_weights.append(weights)
# a dictionary for Returns and Risk values of each portfolio
portfolio = {'Returns': port_returns,
'Volatility': port_volatility,
'Sharpe Ratio': sharpe_ratio}
# extend original dictionary to accomodate each ticker and weight in the portfolio
for counter, symbol in enumerate(selected):
portfolio[symbol + ' Weight'] = [Weight[counter] for Weight in stock_weights]
# make a nice dataframe of the extended dictionary
df = pd.DataFrame(portfolio)
# get better labels for desired arrangement of columns
column_order = ['Returns', 'Volatility', 'Sharpe Ratio'] + [stock + ' Weight' for stock in selected]
# reorder dataframe columns
df = df[column_order]
# find min Volatility & max sharpe values in the dataframe (df)
min_volatility = df['Volatility'].min()
max_sharpe = df['Sharpe Ratio'].max()
sharpe_portfolio = df.loc[df['Sharpe Ratio'] == max_sharpe]
min_variance_portfolio = df.loc[df['Volatility'] == min_volatility]
UserDisplay().plot_efficient_frontier(df, sharpe_portfolio, min_variance_portfolio)
# use the min, max values to locate and create the two special portfolios
return sharpe_portfolio, min_variance_portfolio
def remaining_stocks(self):
"""
This function finds out the remaining Dow component stocks after the selected stocks are taken.
"""
dow_remaining = self._dow_stocks_test.drop(RANDOM_STOCK, axis=1)
self.dow_remaining = [i for i in dow_remaining.columns]
def construct_book(self, dow_stocks_values, buyhold):
"""
This function construct the trading book for the buy and hold trading strategy
"""
portfolio = pd.DataFrame(index=dow_stocks_values.index,
columns=["Total asset", "ProfitLoss", "Returns", "CumReturns"])
if buyhold:
portfolio["Total asset"] = dow_stocks_values.sum(axis=1) + (ACCOUNT_FUND * (1 - ALLOCATION_RATIO))
else:
portfolio["Total asset"] = dow_stocks_values.sum(axis=1)
portfolio["ProfitLoss"] = portfolio["Total asset"] - portfolio["Total asset"].shift(1).fillna(
portfolio["Total asset"][0])
portfolio["Returns"] = portfolio["Total asset"] / portfolio["Total asset"].shift(1) - 1
portfolio["CumReturns"] = portfolio["Returns"].add(1).cumprod().fillna(1)
return portfolio
def diversified_trade(self, ncs, dow_stocks):
"""
This function create trading book for the diversifed portfolios
"""
# Calculate equally weighted fund allocation for each stock
single_component_fund = SINGLE_TRADING_FUND / len(ncs)
# Randomly choose the set number of stocks from DJIA pool of component stocks
share_distribution = single_component_fund / dow_stocks.iloc[0]
dow_stocks_values = dow_stocks.mul(share_distribution, axis=1)
portfolio = self.construct_book(dow_stocks_values, True)
kpi = MathCalc.calc_kpi(portfolio)
return dow_stocks_values, portfolio, kpi
def optimized_diversified_trade(self, ncs, sharpe_portfolio, dow_stocks):
"""
This function create trading book for the diversifed portfolios with asset weights that are optimized by modern portfolio theory
"""
# Calculate equally weighted fund allocation for each stock
single_component_fund = SINGLE_TRADING_FUND * sharpe_portfolio.T.iloc[3:].values.flatten()
# Randomly choose the set number of stocks from DJIA pool of component stocks
share_distribution = single_component_fund / dow_stocks[ncs].iloc[0]
dow_stocks_values = dow_stocks[ncs].mul(share_distribution, axis=1)
portfolio = self.construct_book(dow_stocks_values, True)
kpi = MathCalc.calc_kpi(portfolio)
return dow_stocks_values, portfolio, kpi
def stocks_corr(self, portfolio_longonly_pre):
"""
This function calculate the correlation coefficient between a portfolio returns and a stock returns
"""
remaining_corr = pd.Series(index=self.dow_remaining)
for stock in self.dow_remaining:
stock_return = MathCalc.calc_return(self.dow_stocks_train[stock])
remaining_corr[stock] = portfolio_longonly_pre['Returns'][1:].corr(stock_return)
return remaining_corr.sort_values(ascending=True)
def find_non_correlate_stocks(self, num_non_corr_stocks):
"""
This function performs trade with a portfolio starting with the number of stocks specified and
find the required number of most uncorrelated stocks.
Only the train set data is used to perform this task to avoid look ahead bias.
"""
add_stocks = (min(num_non_corr_stocks, len(DJI))) - 1
# Get the returns of the long only returns of all Dow component stocks during the pre-trading period.
single_component_fund = SINGLE_TRADING_FUND
share_distribution = single_component_fund / self.dow_stocks_train[RANDOM_STOCK].iloc[0]
dow_stocks_values = self.dow_stocks_train[RANDOM_STOCK].mul(share_distribution, axis=1)
portfolio_longonly_train = self.construct_book(dow_stocks_values, True)
# find the most uncorrelated stocks with the one randomly selected stock arranged from most
# uncorrelated to most correlated
remaining_corr = self.stocks_corr(portfolio_longonly_train)
# Assemble the non-correlate stocks
ncs = RANDOM_STOCK
adding_stocks = [i for i in remaining_corr[0:add_stocks].index]
# add stocks to the random portfolio stock
ncs = ncs + adding_stocks
# Do buy and hold trade with a simple equally weighted portfolio of the 5 non-correlate stocks
portfolio_values, portfolio_nc_5, kpi_nc_5 = self.diversified_trade(ncs, self.dow_stocks_train[ncs])
return portfolio_nc_5, kpi_nc_5, ncs
class UserDisplay:
"""
The class displays plot(s) to users.
"""
def plot_prediction(self, original, trained, train_len, nn):
"""
Function to plot all stocks' actual price and price predicted by LSTM model.
"""
# Set a palette so that all 14 lines can be better differentiated
color_palette = ['#e6194b', '#3cb44b', '#4363d8']
fig, ax = plt.subplots(5, 1, figsize=(16, 30))
plt.subplots_adjust(hspace=0.5)
for i, s in enumerate(original.columns):
ax[i].plot(original.index, original[s], '-', label="Original price", linewidth=2, color=color_palette[0])
ax[i].plot(trained.iloc[:train_len].index, trained[trained.columns[i]].iloc[:train_len], '-',
label="Trained price", linewidth=2,
color=color_palette[1], alpha=0.8)
ax[i].plot(trained.iloc[train_len:].index, trained[trained.columns[i]].iloc[train_len:], '-',
label="Predicted price", linewidth=2,
color=color_palette[2])
ax[i].set_title("{} trained model price prediction for {}".format(nn, s), fontsize=14)
plt.legend()
plt.xlabel('Date')
plt.ylabel('Stock price')
#plt.title('Original, trained & predicted stock price trained on {} model'.format(nn))
plt.subplots_adjust(hspace=0.5)
# Display and save the graph
plt.savefig('./test_result/price_prediction_{}.png'.format(nn))
# Inform user graph is saved and the program is ending.
print(
"Plot saved in ./test_result/prediction_{}.png. When done viewing, please close this plot for next plot. Thank You!".format(
nn))
plt.show()
def plot_efficient_frontier(self, risk_return_dict, sharpe_portfolio, min_variance_portfolio):
"""
Plot the efficient frontier of a portfolio of stocks.
"""
# plot frontier, max sharpe & min Volatility values with a scatterplot
plt.style.use('seaborn-dark')
risk_return_dict.plot.scatter(x='Volatility', y='Returns', c='Sharpe Ratio',
cmap='inferno', edgecolors='black', figsize=(10, 8), grid=True)
plt.scatter(x=sharpe_portfolio['Volatility'], y=sharpe_portfolio['Returns'], c='red', marker='D', s=200)
plt.scatter(x=min_variance_portfolio['Volatility'], y=min_variance_portfolio['Returns'], c='blue', marker='D',
s=200)
plt.xlabel('Volatility (Std. Deviation)')
plt.ylabel('Expected Returns')
plt.title('Efficient Frontier')
# Display and save the graph
plt.savefig('./test_result/efficient_frontier.png')
# Inform user graph is saved and the program is ending.
print(
"Plot saved in ./test_result/efficient_frontier.png. When done viewing, please close this plot for next plot. Thank You!")
plt.show()
def plot_portfolio_return(self, cum_returns):
"""
Function to plot all portfolio cumulative returns.
"""
# Set a palette so that all 14 lines can be better differentiated
color_palette = ['#36C4FE', '#FF66F9', '#FF7E66', '#DE0049', '0038E7',
'#758CFF', '#4400E7', '#A2ED00', '#00EDC3', '#EECF00', '#EE5C00']
fig, ax = plt.subplots(figsize=(14, 6))
# Iterate the compared list to get correlation coefficient array for every compared index
# Plot the correlation line on the plot canvas
for i, d in enumerate(cum_returns):
ax.plot(cum_returns.index, cum_returns[d], '-', label=cum_returns.columns[i], linewidth=2.5,
color=color_palette[i])
plt.legend()
plt.xlabel('Years')
plt.ylabel('Cumulative returns')
plt.title('Cumulative returns for portfolios with different trading models')
# Display and save the graph
plt.savefig('./test_result/portfolios_returns.png')
# Inform user graph is saved and the program is ending.
print(
"Plot saved in ./test_result/portfolios_returns.png. When done viewing, please close this plot for next plot. Thank You!")
plt.show()
def plot_portfolio_risk(self, returns):
"""
This function plot the histograms of returns for all portfolios.
"""
plt.close('all')
# Define axes, number of rows and columns
f, ax = plt.subplots(3, 2, figsize=(20, 16))
plt.subplots_adjust(hspace=0.5)
for i, d in enumerate(returns):
# Do odd/even check to col number for plot axes
col, row = MathCalc.colrow(i)
ret = returns[d].dropna()
# plot line graph
ax[row, col].hist(ret, bins=50, color='darkgreen')
ax[row, col].axvline(ret.mean(), color='red',
linestyle='-.', linewidth=2.5, label='Mean')
ax[row, col].axvline(np.median(ret), color='#f1f442',
linestyle='-.', linewidth=2.5, label='Median')
ax[row, col].axvline(np.median(ret) + ret.std(), color='#b2f441', linestyle='--', linewidth=2,
label='1 x sigma')
ax[row, col].axvline(np.median(ret) - ret.std(),
color='#b2f441', linestyle='--', linewidth=2)
ax[row, col].set_title("Returns histogram for portfolio {}".format(returns.columns[i]), fontsize=14)
ax[row, col].legend()
plt.savefig('./test_result/portfolios_risk.png')
print(
"Plot saved in ./test_result/portfolios_risk.png. When done viewing, please close this plot to end program. Thank You!")
plt.show()