forked from adamian98/pulse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacenet.py
executable file
·46 lines (41 loc) · 1.48 KB
/
facenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/python3
import os
import torch
from PIL import Image
from facenet_pytorch import MTCNN, InceptionResnetV1
import torchvision
class FaceNet:
def __init__(self):
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.mtcnn = MTCNN(device=self.device)
self.resnet = InceptionResnetV1(pretrained='vggface2').eval().to(self.device)
self.get_image = torchvision.transforms.ToPILImage()
# calculate the euclidean distance of two face tensors: (batch, 3, height, width)
def __call__(self, face1, face2):
batch = face1.size(0)
d = torch.zeros(batch, 1)
for i in range(batch):
a = self.get_image(face1[i].cpu().clamp(0,1))
b = self.get_image(face2[i].cpu().clamp(0,1))
f1 = self.crop(a).to(self.device)
f2 = self.crop(b).to(self.device)
embedding1 = self.resnet(f1.unsqueeze(0))
embedding2 = self.resnet(f2.unsqueeze(0))
d[i] = torch.cdist(embedding1, embedding2)
# perserve the gradients?
grad = (face1 + face2).sum()
loss = grad - grad + d.sum()
return loss
def crop(self, image):
cropped = self.mtcnn(image)
# no face detected
if cropped is None:
cropped = torch.zeros(3, 20, 20)
return cropped
# test
if False:
x = torch.randn(1, 3, 160, 160)
y = torch.randn(1, 3, 160, 160)
facenet = FaceNet()
d = facenet(x, y)
d.backward()