forked from cloga/scipy-lecture-notes_cn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwiener_filtering.py
61 lines (45 loc) · 1.63 KB
/
wiener_filtering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
""" Wiener filtering a noisy Lena: this module is buggy
"""
import numpy as np
import scipy as sp
import pylab as pl
from scipy import signal
def local_mean(img, size=3):
""" Compute a image of the local average
"""
structure_element = np.ones((size, size), dtype=img.dtype)
l_mean = signal.correlate(img, structure_element, mode='same')
l_mean /= size**2
return l_mean
def local_var(img, size=3):
""" Compute a image of the local variance
"""
structure_element = np.ones((size, size), dtype=img.dtype)
l_var = signal.correlate(img**2, structure_element, mode='same')
l_var /= size**2
l_var -= local_mean(img, size=size)**2
return l_var
def iterated_wiener(noisy_img, size=3):
""" Wiener filter with iterative computation of the noise variance.
Do not use this: this is crappy code to demo bugs!
"""
noisy_img = noisy_img
denoised_img = local_mean(noisy_img, size=size)
l_var = local_var(noisy_img, size=size)
for i in range(3):
res = noisy_img - denoised_img
noise = (res**2).sum()/res.size
noise_level = (1 - noise/l_var )
noise_level[noise_level<0] = 0
denoised_img += noise_level*res
return denoised_img
################################################################################
cut = (slice(128, -128), slice(128, -128))
np.random.seed(7)
lena = sp.misc.lena()
noisy_lena = lena + 20*np.random.randint(3, size=lena.shape) - 30
pl.matshow(lena[cut], cmap=pl.cm.gray)
pl.matshow(noisy_lena[cut], cmap=pl.cm.gray)
denoised_lena = iterated_wiener(noisy_lena)
pl.matshow(denoised_lena[cut], cmap=pl.cm.gray)
pl.show()