-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBuildModel.py
268 lines (200 loc) · 9.33 KB
/
BuildModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import tensorflow as tf
import LoadData as LD
import DefineParam as DP
# Input: Parameters
pixel_w, pixel_h, batchSize, nPhase, nTrainData, nValData, learningRate, nEpoch, nOfModel, ncpkt, trainFile, valFile, testFile, saveDir, modelDir = DP.get_param()
# Model Building
def build_model(phi, missing_index, restore=False):
Xinput, Xoutput, Phi, PhiT, Yinput, Epoch_num, Y, Z = LD.pre_calculate(phi)
prediction, predictionSymmetric, transField, lambdaStep, softThr = inference_ista(Y, Z, Xinput, Xoutput, Phi, PhiT, Yinput, Epoch_num, reuse=False)
costMean, costSymmetric = compute_cost(prediction, predictionSymmetric, Xoutput, phi)
if restore is False:
costSparsity = compute_sparsity(transField)
costAll =costMean + 0.01*costSymmetric
# + 0.001 * costSparsity
optmAll = tf.train.AdamOptimizer(learning_rate=learningRate).minimize(costAll)
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
saver = tf.train.Saver(tf.global_variables(), max_to_keep=100)
sess = tf.Session(config=config)
if restore is False:
sess.run(init)
# saver.restore(sess, '%s/60.cpkt' % modelDir)
else:
saver.restore(sess, '%s/%d.cpkt' % (modelDir, ncpkt))
var = tf.trainable_variables()
for i in var:
print(i)
if restore is False:
return sess, saver, Xinput, Xoutput, Epoch_num, costMean, costSymmetric, costSparsity, optmAll, Yinput, prediction, lambdaStep, softThr, transField
else:
return sess, saver, Xinput, Xoutput, Yinput, Epoch_num, prediction, transField
# Add weight and bias
def add_conv2d_weight(wShape, nOrder):
return tf.get_variable(shape=wShape, initializer=tf.contrib.layers.xavier_initializer_conv2d(), name='weight_%d' % (nOrder))
def ista_block(layertensorY, layertensorZ, layerxk, layeryk, Phi, PhiT, Yinput, Epoch_num):
# Parameters
lambdaStep = tf.Variable(0.1, dtype=tf.float32)
onec = tf.constant(1, dtype=tf.float32)
softThr = tf.Variable(0.001, dtype=tf.float32)
t = tf.Variable(1, dtype=tf.float32)
channel=144
convSize1 = channel
convSize2 = channel
convSize3 = channel
filterSize1 = 3
filterSize2 = 3
filterSize3 = 3
# rk <-- yk:1*120*160*3
#rk = tf.subtract(layeryk[-1], tf.scalar_mul(lambdaStep, tf.multiply(Phi, tf.subtract(tf.multiply(Phi, layeryk[-1]), Yinput))))
rho1=tf.div(onec, lambdaStep)
Yrho=tf.scalar_mul(rho1,layertensorY[-1])
Ak=layertensorZ[-1]-Yrho
weight6 = add_conv2d_weight([filterSize1, filterSize1, nOfModel, 128], 6)
Bk = tf.nn.conv2d(Ak, weight6, strides=[1, 1, 1, 1], padding='SAME')
weight7 = add_conv2d_weight([filterSize1, filterSize1, 128, nOfModel], 7)
Ck = tf.nn.conv2d(Bk, weight7, strides=[1, 1, 1, 1], padding='SAME')
# Ck=Ak
xk=tf.add(layerxk[0],tf.multiply(PhiT,Ck))
rk=tf.add(xk,Yrho)
# Drk <-- rk
weight0 = add_conv2d_weight([filterSize1, filterSize1, nOfModel, convSize1], 0)
# Drk = tf.nn.conv2d(rk, weight0, strides=[1, 1, 1, 1], padding='SAME')
# Transform Module
weight1 = add_conv2d_weight([filterSize2, filterSize2, convSize1, convSize2], 1)
weight2 = add_conv2d_weight([filterSize3, filterSize3, convSize2, convSize3], 2)
Frk = tf.nn.conv2d(rk, weight1, strides=[1, 1, 1, 1], padding='SAME')
Frk = tf.nn.relu(Frk)
Frk = tf.nn.conv2d(Frk, weight2, strides=[1, 1, 1, 1], padding='SAME')
field = Frk
# Soft-thresholding Module
softFRk = tf.multiply(tf.sign(Frk), tf.nn.relu(tf.subtract(tf.abs(Frk), softThr)))
# Inverse Transform Module
weight3 = add_conv2d_weight([filterSize3, filterSize3, convSize3, convSize2], 3)
weight4 = add_conv2d_weight([filterSize2, filterSize2, convSize2, convSize1], 4)
FFrk = tf.nn.conv2d(softFRk, weight3, strides=[1, 1, 1, 1], padding='SAME')
FFrk = tf.nn.relu(FFrk)
FFrk = tf.nn.conv2d(FFrk, weight4, strides=[1, 1, 1, 1], padding='SAME')
# get Grk from Rk
weight5 = add_conv2d_weight([filterSize1, filterSize1, convSize1, nOfModel], 5)
# Grk = tf.nn.conv2d(FFrk, weight5, strides=[1, 1, 1, 1], padding='SAME')
# xk = rk + Grk
# xk = tf.add(rk, Grk)
# yk = (1 + t)*xk - t*layerxk[-1]
zk=FFrk
yk=tf.add(layertensorY[-1],tf.scalar_mul(lambdaStep, tf.subtract(xk,zk)))
# Symmetric Restriction for Computing Loss Function
sFrk = tf.nn.conv2d(Frk, weight3, strides=[1, 1, 1, 1], padding='SAME')
# sFrk = tf.nn.relu(sFrk)
sFrk = tf.nn.conv2d(sFrk, weight4, strides=[1, 1, 1, 1], padding='SAME')
# rk difference
symmetric = sFrk - rk
return xk, yk, zk, symmetric, field, lambdaStep, softThr
# def ista_block(layertensorY, layertensorZ, layerxk, layeryk, Phi, PhiT, Yinput, Epoch_num):
#
# # Parameters
# lambdaStep = tf.Variable(0.1, dtype=tf.float32)
# onec = tf.constant(1, dtype=tf.float32)
# softThr = tf.Variable(0.001, dtype=tf.float32)
# t = tf.Variable(1, dtype=tf.float32)
# channel=144
# convSize1 = channel
# convSize2 = channel
# convSize3 = channel
# filterSize1 = 3
# filterSize2 = 3
# filterSize3 = 3
#
# # rk <-- yk:1*120*160*3
# #rk = tf.subtract(layeryk[-1], tf.scalar_mul(lambdaStep, tf.multiply(Phi, tf.subtract(tf.multiply(Phi, layeryk[-1]), Yinput))))
# rho1=tf.div(onec, lambdaStep)
# Yrho=tf.scalar_mul(rho1,layertensorY[-1])
# Ak=layertensorZ[-1]-Yrho
#
# weight6 = add_conv2d_weight([filterSize1, filterSize1, nOfModel, 128], 6)
# Bk = tf.nn.conv2d(Ak, weight6, strides=[1, 1, 1, 1], padding='SAME')
# weight7 = add_conv2d_weight([filterSize1, filterSize1, 128, nOfModel], 7)
# Ck = tf.nn.conv2d(Bk, weight7, strides=[1, 1, 1, 1], padding='SAME')
# # Ck=Ak
#
#
# xk=tf.add(layerxk[0],tf.multiply(PhiT,Ck))
# rk=tf.add(xk,Yrho)
#
# # Drk <-- rk
# weight0 = add_conv2d_weight([filterSize1, filterSize1, nOfModel, convSize1], 0)
# # Drk = tf.nn.conv2d(rk, weight0, strides=[1, 1, 1, 1], padding='SAME')
#
# # Transform Module
# weight1 = add_conv2d_weight([filterSize2, filterSize2, convSize1, convSize2], 1)
# weight2 = add_conv2d_weight([filterSize3, filterSize3, convSize2, convSize3], 2)
# Frk = tf.nn.conv2d(rk, weight1, strides=[1, 1, 1, 1], padding='SAME')
# # Frk = tf.nn.relu(Frk)
# # Frk = tf.nn.conv2d(Frk, weight2, strides=[1, 1, 1, 1], padding='SAME')
# field = Frk
#
# # Soft-thresholding Module
# softFRk = tf.multiply(tf.sign(Frk), tf.nn.relu(tf.subtract(tf.abs(Frk), softThr)))
#
#
# # Inverse Transform Module
# weight3 = add_conv2d_weight([filterSize3, filterSize3, convSize3, convSize2], 3)
# weight4 = add_conv2d_weight([filterSize2, filterSize2, convSize2, convSize1], 4)
# FFrk = tf.nn.conv2d(softFRk, weight3, strides=[1, 1, 1, 1], padding='SAME')
# # FFrk = tf.nn.relu(FFrk)
# # FFrk = tf.nn.conv2d(FFrk, weight4, strides=[1, 1, 1, 1], padding='SAME')
#
# # get Grk from Rk
# weight5 = add_conv2d_weight([filterSize1, filterSize1, convSize1, nOfModel], 5)
# # Grk = tf.nn.conv2d(FFrk, weight5, strides=[1, 1, 1, 1], padding='SAME')
# # xk = rk + Grk
#
# # xk = tf.add(rk, Grk)
# # yk = (1 + t)*xk - t*layerxk[-1]
# zk=FFrk
# yk=tf.add(layertensorY[-1],tf.scalar_mul(lambdaStep, tf.subtract(xk,zk)))
#
# # Symmetric Restriction for Computing Loss Function
# sFrk = tf.nn.conv2d(Frk, weight3, strides=[1, 1, 1, 1], padding='SAME')
# # sFrk = tf.nn.relu(sFrk)
# # sFrk = tf.nn.conv2d(sFrk, weight4, strides=[1, 1, 1, 1], padding='SAME')
#
# # rk difference
# symmetric = sFrk - rk #转换到频域前、频域后再逆变换回来,的区别。不考虑软阈值
# return xk, yk, zk, symmetric, field, lambdaStep, softThr
def inference_ista(Y, Z, Xinput, Xoutput, Phi, PhiT, Yinput, Epoch_num, reuse):
layerxk = []
layeryk = []
layerSymmetric = []
transField = []
layertensorY=[]
layertensorZ = []
layertensorY.append(Y)
layertensorZ.append(Z)
layerxk.append(Xinput)
layeryk.append(Xinput)
for i in range(nPhase):
with tf.variable_scope('conv_%d' % (i), reuse=reuse):
xk, yk, zk, convSymmetric, field, lambdaStep, softThr = ista_block(layertensorY, layertensorZ, layerxk, layeryk, Phi, PhiT, Yinput, Epoch_num)
layerxk.append(xk)
# layeryk.append(yk)
layertensorY.append(yk)
layertensorZ.append(zk)
layerSymmetric.append(convSymmetric)
transField.append(field)
return layerxk, layerSymmetric, transField, lambdaStep, softThr
# Cost Computation
def compute_cost(prediction, predictionSymmetric, Xoutput, phi):
phic=1-phi
costMean = tf.reduce_mean(tf.square(tf.multiply(phic,prediction[-1]) - tf.multiply(phic,Xoutput)))
costSymmetric = 0
for k in range(nPhase):
costSymmetric += tf.reduce_mean(tf.square(predictionSymmetric[k]))
return costMean, costSymmetric
# Sparsity Computation
def compute_sparsity(tensor):
costSparsity = 0
for k in range(nPhase):
costSparsity += tf.reduce_mean(tf.abs(tensor[k])) # l1 norm
return costSparsity