-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdcvaUnequalRowColumn.py
767 lines (645 loc) · 49.2 KB
/
dcvaUnequalRowColumn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# -*- coding: utf-8 -*-
"""
Spyder Editor
Author: Sudipan Saha
"""
import os
import sys
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
import numpy as np
import scipy.io as sio
import matplotlib.pyplot as plt
import h5py
import math
import matplotlib.gridspec as gridspec
import pickle as pickle
from networksForFeatureExtraction import ResnetFeatureExtractor9FeatureFromLayer23
from networksForFeatureExtraction import ResnetFeatureExtractor9FeatureFromLayer8
from networksForFeatureExtraction import ResnetFeatureExtractor9FeatureFromLayer10
from networksForFeatureExtraction import ResnetFeatureExtractor9FeatureFromLayer11
from networksForFeatureExtraction import ResnetFeatureExtractor9FeatureFromLayer5
from networksForFeatureExtraction import ResnetFeatureExtractor9FeatureFromLayer2
from skimage.transform import resize
from skimage import filters
from skimage import morphology
import cv2 as cv
from kmodes.kmodes import KModes
import PIL
import cv2
from scipy.spatial.distance import cdist
import scipy.stats as sistats
from saturateSomePercentile import saturateImage
from options import optionsDCVA
##Parsing options
opt = optionsDCVA().parseOptions()
dataPath = opt.dataPath
inputChannels = opt.inputChannels
outputLayerNumbers = np.array(opt.layersToProcess.split(','),dtype=np.int)
thresholdingStrategy = opt.thresholding
otsuScalingFactor = opt.otsuScalingFactor
objectMinSize = opt.objectMinSize
topPercentSaturationOfImageOk=opt.topPercentSaturationOfImageOk
topPercentToSaturate=opt.topPercentToSaturate
multipleCDBool=opt.multipleCDBool
changeVectorBinarizationStrategy=opt.changeVectorBinarizationStrategy
clusteringStrategy=opt.clusteringStrategy
clusterNumber=opt.clusterNumber
hierarchicalDistanceStrategy=opt.hierarchicalDistanceStrategy
nanVar=float('nan')
#Defining parameters related to the CNN
sizeReductionTable=[nanVar,nanVar,1,nanVar,nanVar,2,nanVar,nanVar,4,nanVar,\
4,4,4,4,4,4,4,4,4,
nanVar,2,nanVar,nanVar,1,nanVar,nanVar,1,1]
featurePercentileToDiscardTable=[nanVar,nanVar,90,nanVar,nanVar,90,nanVar,nanVar,95,nanVar,\
95,95,95,95,95,95,95,95,95,nanVar,95,nanVar,nanVar,95
,nanVar,nanVar,0,0]
filterNumberTable=[nanVar,nanVar,64,nanVar,nanVar,128,nanVar,nanVar,256,nanVar,\
256,256,256,256,256,256,256,256,256,nanVar,128,nanVar,nanVar,64,nanVar,nanVar,1,1]
#here "0", the starting index is reflectionPad2D which is not a real layer. So when
#later operations like filterNumberForOutputLayer=filterNumberTable[outputLayerNumber] are taken, it works, as 0 is dummy and indexing starts from 1
#Reading Image
try:
inputDataContents=sio.loadmat(dataPath)
preChangeImage=inputDataContents['preChangeImage']
postChangeImage=inputDataContents['postChangeImage']
except:
sys.exit('Cannot read the file. Check if it is a valid .mat file with both pre-change (variable preChangeImage) and post-change data (variable postChangeImage)')
preChangeImageOriginalShape = preChangeImage.shape
if preChangeImageOriginalShape[0]<preChangeImageOriginalShape[1]: ##code is written in a way s.t. it expects row>col
preChangeImage = np.swapaxes(preChangeImage,0,1)
postChangeImage = np.swapaxes(postChangeImage,0,1)
#Pre-change and post-change image normalization
if topPercentSaturationOfImageOk:
preChangeImageNormalized=saturateImage().saturateSomePercentileMultispectral(preChangeImage, topPercentToSaturate)
postChangeImageNormalized=saturateImage().saturateSomePercentileMultispectral(postChangeImage, topPercentToSaturate)
#Reassigning pre-change and post-change image to normalized values
data1=np.copy(preChangeImageNormalized)
data2=np.copy(postChangeImageNormalized)
#Checking image dimension
imageSize=data1.shape
imageSizeRow=imageSize[0]
imageSizeCol=imageSize[1]
imageNumberOfChannel=imageSize[2]
#Initilizing net / model (G_B: acts as feature extractor here)
input_nc=imageNumberOfChannel #input number of channels
output_nc=6 #from Potsdam dataset number of classes
ngf=64 # number of gen filters in first conv layer
norm_layer = nn.BatchNorm2d
use_dropout=False
netForFeatureExtractionLayer23=ResnetFeatureExtractor9FeatureFromLayer23(input_nc, output_nc, ngf, norm_layer, use_dropout, 9)
netForFeatureExtractionLayer11=ResnetFeatureExtractor9FeatureFromLayer11(input_nc, output_nc, ngf, norm_layer, use_dropout, 9)
netForFeatureExtractionLayer10=ResnetFeatureExtractor9FeatureFromLayer10(input_nc, output_nc, ngf, norm_layer, use_dropout, 9)
netForFeatureExtractionLayer8=ResnetFeatureExtractor9FeatureFromLayer8(input_nc, output_nc, ngf, norm_layer, use_dropout, 9)
netForFeatureExtractionLayer5=ResnetFeatureExtractor9FeatureFromLayer5(input_nc, output_nc, ngf, norm_layer, use_dropout, 9)
netForFeatureExtractionLayer2=ResnetFeatureExtractor9FeatureFromLayer2(input_nc, output_nc, ngf, norm_layer, use_dropout, 9)
if inputChannels=='RGB':
state_dict=torch.load('./trainedNet/RGB/trainedModelFinal')
if imageNumberOfChannel!=3:
sys.exit('Input images do not have 3 channels while loaded model is for R-G-B input')
elif inputChannels=='RGBNIR':
state_dict=torch.load('./trainedNet/RGBIR/trainedModelFinal')
if imageNumberOfChannel!=4:
sys.exit('Input images do not have 4 channels while loaded model is for R-G-B-NIR input')
else:
sys.exit('Image channels not valid - valid arguments RGB or RGBNIR')
#for name, param in state_dict.items():
# print(name)
netForFeatureExtractionLayer23Dict=netForFeatureExtractionLayer23.state_dict()
state_dictForLayer23=state_dict
state_dictForLayer23={k: v for k, v in state_dict.items() if k in netForFeatureExtractionLayer23Dict}
netForFeatureExtractionLayer11Dict=netForFeatureExtractionLayer11.state_dict()
state_dictForLayer11=state_dict
state_dictForLayer11={k: v for k, v in state_dict.items() if k in netForFeatureExtractionLayer11Dict}
netForFeatureExtractionLayer10Dict=netForFeatureExtractionLayer10.state_dict()
state_dictForLayer10=state_dict
state_dictForLayer10={k: v for k, v in state_dict.items() if k in netForFeatureExtractionLayer10Dict}
netForFeatureExtractionLayer8Dict=netForFeatureExtractionLayer8.state_dict()
state_dictForLayer8=state_dict
state_dictForLayer8={k: v for k, v in state_dict.items() if k in netForFeatureExtractionLayer8Dict}
netForFeatureExtractionLayer5Dict=netForFeatureExtractionLayer5.state_dict()
state_dictForLayer5=state_dict
state_dictForLayer5={k: v for k, v in state_dict.items() if k in netForFeatureExtractionLayer5Dict}
netForFeatureExtractionLayer2Dict=netForFeatureExtractionLayer2.state_dict()
state_dictForLayer2=state_dict
state_dictForLayer2={k: v for k, v in state_dict.items() if k in netForFeatureExtractionLayer2Dict}
netForFeatureExtractionLayer23.load_state_dict(state_dictForLayer23)
netForFeatureExtractionLayer11.load_state_dict(state_dictForLayer11)
netForFeatureExtractionLayer10.load_state_dict(state_dictForLayer10)
netForFeatureExtractionLayer8.load_state_dict(state_dictForLayer8)
netForFeatureExtractionLayer5.load_state_dict(state_dictForLayer5)
netForFeatureExtractionLayer2.load_state_dict(state_dictForLayer2)
input_nc=imageNumberOfChannel #input number of channels
output_nc=imageNumberOfChannel #output number of channels
ngf=64 # number of gen filters in first conv layer
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=True)
use_dropout=False
##changing all nets to eval mode
netForFeatureExtractionLayer23.eval()
netForFeatureExtractionLayer23.requires_grad=False
netForFeatureExtractionLayer11.eval()
netForFeatureExtractionLayer11.requires_grad=False
netForFeatureExtractionLayer10.eval()
netForFeatureExtractionLayer10.requires_grad=False
netForFeatureExtractionLayer8.eval()
netForFeatureExtractionLayer8.requires_grad=False
netForFeatureExtractionLayer5.eval()
netForFeatureExtractionLayer5.requires_grad=False
netForFeatureExtractionLayer2.eval()
netForFeatureExtractionLayer2.requires_grad=False
torch.no_grad()
eachPatch=imageSizeRow
numImageSplitRow=imageSizeRow/eachPatch
numImageSplitCol=imageSizeCol/eachPatch
cutY=list(range(0,imageSizeRow,eachPatch))
cutX=list(range(0,imageSizeCol,eachPatch))
additionalPatchPixel=64
layerWiseFeatureExtractorFunction=[nanVar,nanVar,netForFeatureExtractionLayer2,nanVar,nanVar,netForFeatureExtractionLayer5,nanVar,nanVar,netForFeatureExtractionLayer8,nanVar,\
netForFeatureExtractionLayer10,netForFeatureExtractionLayer11,nanVar,nanVar,nanVar,nanVar,nanVar,nanVar,nanVar,nanVar,\
nanVar,nanVar,nanVar,netForFeatureExtractionLayer23,nanVar,nanVar,nanVar,nanVar]
##Checking validity of feature extraction layers
validFeatureExtractionLayers=[2,5,8,10,11,23] ##Feature extraction from only these layers have been defined here
for outputLayer in outputLayerNumbers:
if outputLayer not in validFeatureExtractionLayers:
sys.exit('Feature extraction layer is not valid, valid values are 2,5,8,10,11,23')
##Extracting bi-temporal features
modelInputMean=0.406
for outputLayerIter in range(0,len(outputLayerNumbers)):
outputLayerNumber=outputLayerNumbers[outputLayerIter]
filterNumberForOutputLayer=filterNumberTable[outputLayerNumber]
featurePercentileToDiscard=featurePercentileToDiscardTable[outputLayerNumber]
featureNumberToRetain=int(np.floor(filterNumberForOutputLayer*((100-featurePercentileToDiscard)/100)))
sizeReductionForOutputLayer=sizeReductionTable[outputLayerNumber]
patchOffsetFactor=int(additionalPatchPixel/sizeReductionForOutputLayer)
print('Processing layer number:'+str(outputLayerNumber))
timeVector1Feature=np.zeros([imageSizeRow,imageSizeCol,filterNumberForOutputLayer])
timeVector2Feature=np.zeros([imageSizeRow,imageSizeCol,filterNumberForOutputLayer])
if ((imageSizeRow<eachPatch) | (imageSizeCol<eachPatch)):
if imageSizeRow>imageSizeCol:
patchToProcessDate1=np.pad(data1,[(0,0),(0,imageSizeRow-imageSizeCol),(0,0)],'symmetric')
patchToProcessDate2=np.pad(data2,[(0,0),(0,imageSizeRow-imageSizeCol),(0,0)],'symmetric')
if imageSizeCol>imageSizeRow:
patchToProcessDate1=np.pad(data1,[(0,imageSizeCol-imageSizeRow),(0,0),(0,0)],'symmetric')
patchToProcessDate2=np.pad(data2,[(0,imageSizeCol-imageSizeRow),(0,0),(0,0)],'symmetric')
if imageSizeRow==imageSizeCol:
patchToProcessDate1=data1
patchToProcessDate2=data2
#print('This image (or this subpatch) is small and hence processing in 1 step')
#converting to pytorch varibales and changing dimension for input to net
patchToProcessDate1=patchToProcessDate1-modelInputMean
inputToNetDate1=torch.from_numpy(patchToProcessDate1)
inputToNetDate1=inputToNetDate1.float()
inputToNetDate1=np.swapaxes(inputToNetDate1,0,2)
inputToNetDate1=np.swapaxes(inputToNetDate1,1,2)
inputToNetDate1=inputToNetDate1.unsqueeze(0)
del patchToProcessDate1
patchToProcessDate2=patchToProcessDate2-modelInputMean
inputToNetDate2=torch.from_numpy(patchToProcessDate2)
inputToNetDate2=inputToNetDate2.float()
inputToNetDate2=np.swapaxes(inputToNetDate2,0,2)
inputToNetDate2=np.swapaxes(inputToNetDate2,1,2)
inputToNetDate2=inputToNetDate2.unsqueeze(0)
del patchToProcessDate2
#running model on image 1 and converting features to numpy format
with torch.no_grad():
obtainedFeatureVals1=layerWiseFeatureExtractorFunction[outputLayerNumber](inputToNetDate1)
obtainedFeatureVals1=obtainedFeatureVals1.squeeze()
obtainedFeatureVals1=obtainedFeatureVals1.data.numpy()
del inputToNetDate1
#running model on image 2 and converting features to numpy format
with torch.no_grad():
obtainedFeatureVals2=layerWiseFeatureExtractorFunction[outputLayerNumber](inputToNetDate2)
obtainedFeatureVals2=obtainedFeatureVals2.squeeze()
obtainedFeatureVals2=obtainedFeatureVals2.data.numpy()
del inputToNetDate2
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector1Feature[0:imageSizeRow,\
0:imageSizeCol,processingFeatureIter]=\
resize(obtainedFeatureVals1[processingFeatureIter,\
0:int(imageSizeRow/sizeReductionForOutputLayer),\
0:int(imageSizeCol/sizeReductionForOutputLayer)],\
(imageSizeRow,imageSizeCol))
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector2Feature[0:imageSizeRow,\
0:imageSizeCol,processingFeatureIter]=\
resize(obtainedFeatureVals2[processingFeatureIter,\
0:int(imageSizeRow/sizeReductionForOutputLayer),\
0:int(imageSizeCol/sizeReductionForOutputLayer)],\
(imageSizeRow,imageSizeCol))
if not((imageSizeRow<eachPatch) | (imageSizeCol<eachPatch)):
for kY in range(0,len(cutY)):
for kX in range(0,len(cutX)):
#extracting subset of image 1
if (kY==0 and kX==0):
patchToProcessDate1=data1[cutY[kY]:(cutY[kY]+eachPatch+additionalPatchPixel),\
cutX[kX]:(cutX[kX]+eachPatch+additionalPatchPixel),:]
elif (kY==0 and kX!=(len(cutX)-1)):
patchToProcessDate1=data1[cutY[kY]:(cutY[kY]+eachPatch+additionalPatchPixel),\
(cutX[kX]-additionalPatchPixel):(cutX[kX]+eachPatch),:]
elif (kY!=(len(cutY)-1) and kX==(len(cutX)-1)):
patchToProcessDate1=data1[cutY[kY]:(cutY[kY]+eachPatch+additionalPatchPixel),\
(imageSizeCol-eachPatch-additionalPatchPixel):(imageSizeCol),:]
elif (kX==0 and kY!=(len(cutY)-1)):
patchToProcessDate1=data1[(cutY[kY]-additionalPatchPixel):\
(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch+additionalPatchPixel),:]
elif (kX!=(len(cutX)-1) and kY==(len(cutY)-1)):
patchToProcessDate1=data1[(imageSizeRow-eachPatch-additionalPatchPixel):\
(imageSizeRow),\
cutX[kX]:(cutX[kX]+eachPatch+additionalPatchPixel),:]
elif (kY==(len(cutY)-1) and kX==(len(cutX)-1)):
patchToProcessDate1=data1[(imageSizeRow-eachPatch-additionalPatchPixel):\
(imageSizeRow),\
(imageSizeCol-eachPatch-additionalPatchPixel):(imageSizeCol),:]
else:
patchToProcessDate1=data1[(cutY[kY]-additionalPatchPixel):\
(cutY[kY]+eachPatch),\
(cutX[kX]-additionalPatchPixel):(cutX[kX]+eachPatch),:]
#extracting subset of image 2
if (kY==0 and kX==0):
patchToProcessDate2=data2[cutY[kY]:(cutY[kY]+eachPatch+additionalPatchPixel),\
cutX[kX]:(cutX[kX]+eachPatch+additionalPatchPixel),:]
elif (kY==0 and kX!=(len(cutX)-1)):
patchToProcessDate2=data2[cutY[kY]:(cutY[kY]+eachPatch+additionalPatchPixel),\
(cutX[kX]-additionalPatchPixel):(cutX[kX]+eachPatch),:]
elif (kY!=(len(cutY)-1) and kX==(len(cutX)-1)):
patchToProcessDate2=data2[cutY[kY]:(cutY[kY]+eachPatch+additionalPatchPixel),\
(imageSizeCol-eachPatch-additionalPatchPixel):(imageSizeCol),:]
elif (kX==0 and kY!=(len(cutY)-1)):
patchToProcessDate2=data2[(cutY[kY]-additionalPatchPixel):\
(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch+additionalPatchPixel),:]
elif (kX!=(len(cutX)-1) and kY==(len(cutY)-1)):
patchToProcessDate2=data2[(imageSizeRow-eachPatch-additionalPatchPixel):\
(imageSizeRow),\
cutX[kX]:(cutX[kX]+eachPatch+additionalPatchPixel),:]
elif (kY==(len(cutY)-1) and kX==(len(cutX)-1)):
patchToProcessDate2=data2[(imageSizeRow-eachPatch-additionalPatchPixel):\
(imageSizeRow),\
(imageSizeCol-eachPatch-additionalPatchPixel):(imageSizeCol),:]
else:
patchToProcessDate2=data2[(cutY[kY]-additionalPatchPixel):\
(cutY[kY]+eachPatch),\
(cutX[kX]-additionalPatchPixel):(cutX[kX]+eachPatch),:]
print(kY)
print(kX)
print(patchToProcessDate1.shape)
print(patchToProcessDate2.shape)
#converting to pytorch varibales and changing dimension for input to net
patchToProcessDate1=patchToProcessDate1-modelInputMean
inputToNetDate1=torch.from_numpy(patchToProcessDate1)
del patchToProcessDate1
inputToNetDate1=inputToNetDate1.float()
inputToNetDate1=np.swapaxes(inputToNetDate1,0,2)
inputToNetDate1=np.swapaxes(inputToNetDate1,1,2)
inputToNetDate1=inputToNetDate1.unsqueeze(0)
patchToProcessDate2=patchToProcessDate2-modelInputMean
inputToNetDate2=torch.from_numpy(patchToProcessDate2)
del patchToProcessDate2
inputToNetDate2=inputToNetDate2.float()
inputToNetDate2=np.swapaxes(inputToNetDate2,0,2)
inputToNetDate2=np.swapaxes(inputToNetDate2,1,2)
inputToNetDate2=inputToNetDate2.unsqueeze(0)
#running model on image 1 and converting features to numpy format
with torch.no_grad():
obtainedFeatureVals1=layerWiseFeatureExtractorFunction[outputLayerNumber](inputToNetDate1)
obtainedFeatureVals1=obtainedFeatureVals1.squeeze()
obtainedFeatureVals1=obtainedFeatureVals1.data.numpy()
del inputToNetDate1
#running model on image 2 and converting features to numpy format
with torch.no_grad():
obtainedFeatureVals2=layerWiseFeatureExtractorFunction[outputLayerNumber](inputToNetDate2)
obtainedFeatureVals2=obtainedFeatureVals2.squeeze()
obtainedFeatureVals2=obtainedFeatureVals2.data.numpy()
del inputToNetDate2
#this features are in format (filterNumber, sizeRow, sizeCol)
##clipping values to +1 to -1 range, be careful, if network is changed, maybe we need to modify this
obtainedFeatureVals1=np.clip(obtainedFeatureVals1,-1,+1)
obtainedFeatureVals2=np.clip(obtainedFeatureVals2,-1,+1)
#obtaining features from image 1: resizing and truncating additionalPatchPixel
if (kY==0 and kX==0):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector1Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals1[processingFeatureIter,\
0:int(eachPatch/sizeReductionForOutputLayer),\
0:int(eachPatch/sizeReductionForOutputLayer)],\
(eachPatch,eachPatch))
elif (kY==0 and kX!=(len(cutX)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector1Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals1[processingFeatureIter,\
0:int(eachPatch/sizeReductionForOutputLayer),\
(patchOffsetFactor+1):\
(int(eachPatch/sizeReductionForOutputLayer)+patchOffsetFactor+1)],\
(eachPatch,eachPatch))
elif (kY!=(len(cutY)-1) and kX==(len(cutX)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector1Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:imageSizeCol,processingFeatureIter]=\
resize(obtainedFeatureVals1[processingFeatureIter,\
0:int(eachPatch/sizeReductionForOutputLayer),\
(obtainedFeatureVals1.shape[2]-1-int((imageSizeCol-cutX[kX])/sizeReductionForOutputLayer)):\
(obtainedFeatureVals1.shape[2])],\
(eachPatch,(imageSizeCol-cutX[kX])))
elif (kX==0 and kY!=(len(cutY)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector1Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals1[processingFeatureIter,\
(patchOffsetFactor+1):\
(int(eachPatch/sizeReductionForOutputLayer)+patchOffsetFactor+1),\
0:int(eachPatch/sizeReductionForOutputLayer)],\
(eachPatch,eachPatch))
elif (kX!=(len(cutX)-1) and kY==(len(cutY)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector1Feature[cutY[kY]:imageSizeRow,\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals1[processingFeatureIter,\
(obtainedFeatureVals1.shape[1]-1-int((imageSizeRow-cutY[kY])/sizeReductionForOutputLayer)):\
(obtainedFeatureVals1.shape[1]),\
0:int(eachPatch/sizeReductionForOutputLayer)],\
((imageSizeRow-cutY[kY]),eachPatch))
elif (kX==(len(cutX)-1) and kY==(len(cutY)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector1Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals1[processingFeatureIter,\
(obtainedFeatureVals1.shape[1]-1-int((imageSizeRow-cutY[kY])/sizeReductionForOutputLayer)):\
(obtainedFeatureVals1.shape[1]),\
(obtainedFeatureVals1.shape[2]-1-int((imageSizeCol-cutX[kX])/sizeReductionForOutputLayer)):\
(obtainedFeatureVals1.shape[2])],\
((imageSizeRow-cutY[kY]),(imageSizeCol-cutX[kX])))
else:
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector1Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals1[processingFeatureIter,\
(patchOffsetFactor+1):\
(int(eachPatch/sizeReductionForOutputLayer)+patchOffsetFactor+1),\
(patchOffsetFactor+1):\
(int(eachPatch/sizeReductionForOutputLayer)+patchOffsetFactor+1)],\
(eachPatch,eachPatch))
#obtaining features from image 2: resizing and truncating additionalPatchPixel
if (kY==0 and kX==0):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector2Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals2[processingFeatureIter,\
0:int(eachPatch/sizeReductionForOutputLayer),\
0:int(eachPatch/sizeReductionForOutputLayer)],\
(eachPatch,eachPatch))
elif (kY==0 and kX!=(len(cutX)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector2Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals2[processingFeatureIter,\
0:int(eachPatch/sizeReductionForOutputLayer),\
(patchOffsetFactor+1):\
(int(eachPatch/sizeReductionForOutputLayer)+patchOffsetFactor+1)],\
(eachPatch,eachPatch))
elif (kY!=(len(cutY)-1) and kX==(len(cutX)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector2Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:imageSizeCol,processingFeatureIter]=\
resize(obtainedFeatureVals2[processingFeatureIter,\
0:int(eachPatch/sizeReductionForOutputLayer),\
(obtainedFeatureVals2.shape[2]-1-int((imageSizeCol-cutX[kX])/sizeReductionForOutputLayer)):\
(obtainedFeatureVals2.shape[2])],\
(eachPatch,(imageSizeCol-cutX[kX])))
elif (kX==0 and kY!=(len(cutY)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector2Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals2[processingFeatureIter,\
(patchOffsetFactor+1):\
(int(eachPatch/sizeReductionForOutputLayer)+patchOffsetFactor+1),\
0:int(eachPatch/sizeReductionForOutputLayer)],\
(eachPatch,eachPatch))
elif (kX!=(len(cutX)-1) and kY==(len(cutY)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector2Feature[cutY[kY]:imageSizeRow,\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals2[processingFeatureIter,\
(obtainedFeatureVals2.shape[1]-1-int((imageSizeRow-cutY[kY])/sizeReductionForOutputLayer)):\
(obtainedFeatureVals2.shape[1]),\
0:int(eachPatch/sizeReductionForOutputLayer)],\
((imageSizeRow-cutY[kY]),eachPatch))
elif (kX==(len(cutX)-1) and kY==(len(cutY)-1)):
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector2Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals2[processingFeatureIter,\
(obtainedFeatureVals2.shape[1]-1-int((imageSizeRow-cutY[kY])/sizeReductionForOutputLayer)):\
(obtainedFeatureVals2.shape[1]),\
(obtainedFeatureVals2.shape[2]-1-int((imageSizeCol-cutX[kX])/sizeReductionForOutputLayer)):\
(obtainedFeatureVals2.shape[2])],\
((imageSizeRow-cutY[kY]),(imageSizeCol-cutX[kX])))
else:
for processingFeatureIter in range(0,filterNumberForOutputLayer):
timeVector2Feature[cutY[kY]:(cutY[kY]+eachPatch),\
cutX[kX]:(cutX[kX]+eachPatch),processingFeatureIter]=\
resize(obtainedFeatureVals2[processingFeatureIter,\
(patchOffsetFactor+1):\
(int(eachPatch/sizeReductionForOutputLayer)+patchOffsetFactor+1),\
(patchOffsetFactor+1):\
(int(eachPatch/sizeReductionForOutputLayer)+patchOffsetFactor+1)],\
(eachPatch,eachPatch))
del obtainedFeatureVals1,obtainedFeatureVals2
timeVectorDifferenceMatrix=timeVector1Feature-timeVector2Feature
print(timeVectorDifferenceMatrix.shape)
nonZeroVector=[]
stepSizeForStdCalculation=int(imageSizeRow/2)
for featureSelectionIter1 in range(0,imageSizeRow,stepSizeForStdCalculation):
for featureSelectionIter2 in range(0,imageSizeCol,stepSizeForStdCalculation):
timeVectorDifferenceSelectedRegion=timeVectorDifferenceMatrix\
[featureSelectionIter1:(featureSelectionIter1+stepSizeForStdCalculation),\
featureSelectionIter2:(featureSelectionIter2+stepSizeForStdCalculation),
0:filterNumberForOutputLayer]
stdVectorDifferenceSelectedRegion=np.std(timeVectorDifferenceSelectedRegion,axis=(0,1))
featuresOrderedPerStd=np.argsort(-stdVectorDifferenceSelectedRegion) #negated array to get argsort result in descending order
nonZeroVectorSelectedRegion=featuresOrderedPerStd[0:featureNumberToRetain]
nonZeroVector=np.union1d(nonZeroVector,nonZeroVectorSelectedRegion)
modifiedTimeVector1=timeVector1Feature[:,:,nonZeroVector.astype(int)]
modifiedTimeVector2=timeVector2Feature[:,:,nonZeroVector.astype(int)]
del timeVector1Feature,timeVector2Feature
##Normalize the features (separate for both images)
meanVectorsTime1Image=np.mean(modifiedTimeVector1,axis=(0,1))
stdVectorsTime1Image=np.std(modifiedTimeVector1,axis=(0,1))
normalizedModifiedTimeVector1=(modifiedTimeVector1-meanVectorsTime1Image)/stdVectorsTime1Image
meanVectorsTime2Image=np.mean(modifiedTimeVector2,axis=(0,1))
stdVectorsTime2Image=np.std(modifiedTimeVector2,axis=(0,1))
normalizedModifiedTimeVector2=(modifiedTimeVector2-meanVectorsTime2Image)/stdVectorsTime2Image
##feature aggregation across channels
if outputLayerIter==0:
timeVector1FeatureAggregated=np.copy(normalizedModifiedTimeVector1)
timeVector2FeatureAggregated=np.copy(normalizedModifiedTimeVector2)
else:
timeVector1FeatureAggregated=np.concatenate((timeVector1FeatureAggregated,normalizedModifiedTimeVector1),axis=2)
timeVector2FeatureAggregated=np.concatenate((timeVector2FeatureAggregated,normalizedModifiedTimeVector2),axis=2)
del netForFeatureExtractionLayer5, netForFeatureExtractionLayer8, netForFeatureExtractionLayer10, netForFeatureExtractionLayer11,netForFeatureExtractionLayer23
absoluteModifiedTimeVectorDifference=np.absolute(saturateImage().saturateSomePercentileMultispectral(timeVector1FeatureAggregated,5)-\
saturateImage().saturateSomePercentileMultispectral(timeVector2FeatureAggregated,5))
#take absolute value for binary CD
detectedChangeMap=np.linalg.norm(absoluteModifiedTimeVectorDifference,axis=(2))
detectedChangeMapNormalized=(detectedChangeMap-np.amin(detectedChangeMap))/(np.amax(detectedChangeMap)-np.amin(detectedChangeMap))
#plt.figure()
#plt.imshow(detectedChangeMapNormalized)
#detectedChangeMapNormalized=filters.gaussian(detectedChangeMapNormalized,3) #this one is with constant sigma
cdMap=np.zeros(detectedChangeMapNormalized.shape, dtype=bool)
if thresholdingStrategy == 'adaptive':
for sigma in range(101,202,50):
adaptiveThreshold=2*filters.gaussian(detectedChangeMapNormalized,sigma)
cdMapTemp=(detectedChangeMapNormalized>adaptiveThreshold)
cdMapTemp=morphology.remove_small_objects(cdMapTemp,min_size=objectMinSize)
cdMap=cdMap | cdMapTemp
elif thresholdingStrategy == 'otsu':
otsuThreshold=filters.threshold_otsu(detectedChangeMapNormalized)
cdMap = (detectedChangeMapNormalized>otsuThreshold)
cdMap=morphology.remove_small_objects(cdMap,min_size=objectMinSize)
elif thresholdingStrategy == 'scaledOtsu':
otsuThreshold=filters.threshold_otsu(detectedChangeMapNormalized)
cdMap = (detectedChangeMapNormalized>otsuScalingFactor*otsuThreshold)
cdMap=morphology.remove_small_objects(cdMap,min_size=objectMinSize)
else:
sys.exit('Unknown thresholding strategy')
cdMap=morphology.binary_closing(cdMap,morphology.disk(3))
if preChangeImageOriginalShape[0]<preChangeImageOriginalShape[1]: ##Conformity to row>col
cdMap = np.swapaxes(cdMap,0,1)
##Creating directory to save result
resultDirectory = './result/'
if not os.path.exists(resultDirectory):
os.makedirs(resultDirectory)
#Saving the result
sio.savemat(resultDirectory+'binaryCdResult.mat', mdict={'cdMap': cdMap})
plt.imsave(resultDirectory+'binaryCdResult.png',np.repeat(np.expand_dims(cdMap,2),3,2).astype(float))
##Multiple CD analysis
if multipleCDBool==True: ##Multiple CD is performed only if this Bool is True
#finding indices of changed pixels
changePixelsAreaAnalyzedIndices=np.where(cdMap)
changePixelsAreaAnalyzedRow=changePixelsAreaAnalyzedIndices[0]
changePixelsAreaAnalyzedCol=changePixelsAreaAnalyzedIndices[1]
changePixelsAreaAnalyzedLinearIndices=np.ravel_multi_index(changePixelsAreaAnalyzedIndices,cdMap.shape)
numberOfChangePixels=changePixelsAreaAnalyzedRow.shape[0]
#calculating deep change vector and taking out the changed pixels
if preChangeImageOriginalShape[0]<preChangeImageOriginalShape[1]: ##code is written in a way s.t. it expects row>col, reverting modifications related to it
timeVector1FeatureAggregated = np.swapaxes(timeVector1FeatureAggregated,0,1)
timeVector2FeatureAggregated = np.swapaxes(timeVector2FeatureAggregated,0,1)
modifiedTimeVectorDifference=timeVector1FeatureAggregated-timeVector2FeatureAggregated #absolute difference is not taken here
modifiedTimeVectorDifferenceSeries=np.reshape(modifiedTimeVectorDifference,\
(modifiedTimeVectorDifference.shape[0]*modifiedTimeVectorDifference.shape[1],modifiedTimeVectorDifference.shape[2]))
modifiedTimeVectorDifferenceForChangedPixels=np.take(modifiedTimeVectorDifferenceSeries,changePixelsAreaAnalyzedLinearIndices,axis=0)
##binarizing the deep change vector
if changeVectorBinarizationStrategy=='zeroThreshold':
##simple binarization with 0 as threshold
modifiedTimeVectorDifferenceForChangedPixelsBinarized=(modifiedTimeVectorDifferenceForChangedPixels>0)
elif changeVectorBinarizationStrategy=='otsuThreshold':
##binarization with Otsu's threshold
modifiedTimeVectorDifferenceForChangedPixelsBinarized=np.zeros(modifiedTimeVectorDifferenceForChangedPixels.shape,dtype='bool')
for changeVectorBinarizerIter in range(modifiedTimeVectorDifferenceForChangedPixels.shape[1]):
modifiedTimeVectorDifferenceForChangedPixelsBinarized[:,changeVectorBinarizerIter]=\
modifiedTimeVectorDifferenceForChangedPixels[:,changeVectorBinarizerIter]>\
filters.threshold_otsu(modifiedTimeVectorDifferenceForChangedPixels[:,changeVectorBinarizerIter])
else:
sys.exit('Change vector binarization strategy not identified. Multiple CD aborted.')
if clusteringStrategy == 'kmodes':
##applying KModes clustering on the binarized data
kmodeClusterizer = KModes(n_clusters=clusterNumber, init='Huang')
resultCluster = kmodeClusterizer.fit_predict(modifiedTimeVectorDifferenceForChangedPixelsBinarized)
resultCluster=resultCluster+1 #index starts from 0, making it from 1
elif clusteringStrategy == 'hierarchical':
#applying hierarchical clustering
if hierarchicalDistanceStrategy=='hamming':
##hamming distance
correlationMatrix=1-np.absolute(cdist(np.transpose(modifiedTimeVectorDifferenceForChangedPixelsBinarized),\
np.transpose(modifiedTimeVectorDifferenceForChangedPixelsBinarized),'hamming'))
elif hierarchicalDistanceStrategy=='correlation':
##correlation distance
##for correlation distance 0 - perfect correlation, 1 - no correlation, 2 - perfect anticorrelation
##need to change to +1, -1 (rather than True, False which is interpreted as 1,0)
modifiedTimeVectorDifferenceForChangedPixelsBinarizedForCorrDist=\
np.zeros(modifiedTimeVectorDifferenceForChangedPixelsBinarized.shape,dtype='int')
modifiedTimeVectorDifferenceForChangedPixelsBinarizedForCorrDist\
[modifiedTimeVectorDifferenceForChangedPixelsBinarized==True]=1
modifiedTimeVectorDifferenceForChangedPixelsBinarizedForCorrDist\
[modifiedTimeVectorDifferenceForChangedPixelsBinarized==False]=-1
correlationMatrix=np.absolute(1-cdist(np.transpose(modifiedTimeVectorDifferenceForChangedPixelsBinarizedForCorrDist),\
np.transpose(modifiedTimeVectorDifferenceForChangedPixelsBinarizedForCorrDist),'correlation'))
else:
sys.exit('Hierarchical clustering distance measure not recognized. Multiple CD aborted')
#correlationMatrixBinarized=correlationMatrix>(filters.threshold_otsu(correlationMatrix)*2.5)
correlationMatrixBinarized=correlationMatrix>0.5
importancePerFeature=np.sum(correlationMatrix,axis=0) #sum of each column
tempValImportancePerFeature=importancePerFeature
featureImportanceOrder=np.zeros([0],dtype='uint8')
while np.max(tempValImportancePerFeature)!=0:
mostImpFeature=np.asarray(np.where(tempValImportancePerFeature==np.max(tempValImportancePerFeature)))
featureImportanceOrder=np.append(featureImportanceOrder, mostImpFeature)
tempValImportancePerFeature[mostImpFeature]=0
tempValImportancePerFeature[np.asarray(np.where(correlationMatrixBinarized[mostImpFeature,:]))]=0
outputClusterNumber=clusterNumber
numberOfFeatureToConsider=int(np.ceil(np.log2(4)))
featureToConsider=featureImportanceOrder[0:numberOfFeatureToConsider]
binarizedFeaturesOnlyImpFeatures=modifiedTimeVectorDifferenceForChangedPixelsBinarized[:,featureToConsider]
binarizedFeaturesOnlyImpFeaturesToLsb=np.zeros([np.shape(binarizedFeaturesOnlyImpFeatures)[0],8],dtype='bool')
binarizedFeaturesOnlyImpFeaturesToLsb[:,8-numberOfFeatureToConsider:8]=binarizedFeaturesOnlyImpFeatures
decimalFeature=np.packbits(binarizedFeaturesOnlyImpFeaturesToLsb,axis=1)
if (2**numberOfFeatureToConsider-outputClusterNumber)!=0: ##** acts like ^
numberOfClusterToDiscard=2**numberOfFeatureToConsider-outputClusterNumber
currentClusterNumber=2**numberOfFeatureToConsider
for clusterDiscardIter in range(0,numberOfClusterToDiscard):
clusterModeArray=np.zeros([currentClusterNumber,np.shape(binarizedFeaturesOnlyImpFeatures)[1]])
clusterSizeArray=np.zeros(currentClusterNumber)
for currentClusterModeCalculatorIter in range(0,currentClusterNumber):
##took only imp features instead of all features in Matlab version
binarizedFeaturesInThisCluster=binarizedFeaturesOnlyImpFeatures\
[(np.asarray(np.where(decimalFeature==currentClusterModeCalculatorIter)))[0,:],:]
clusterModeArray[currentClusterModeCalculatorIter,:]=np.asarray(sistats.mode(binarizedFeaturesInThisCluster,axis=0)[0])
clusterSizeArray[currentClusterModeCalculatorIter]=(binarizedFeaturesInThisCluster.shape[0])/numberOfChangePixels
distanceBetweenClusters=cdist(clusterModeArray,clusterModeArray,'hamming')
scaledDistanceBetweenClusters=np.copy(distanceBetweenClusters)
for clusterDistanceScalingIterRow in range (distanceBetweenClusters.shape[0]):
for clusterDistanceScalingIterCol in range (distanceBetweenClusters.shape[1]):
scaledDistanceBetweenClusters[clusterDistanceScalingIterRow,clusterDistanceScalingIterCol]=\
scaledDistanceBetweenClusters[clusterDistanceScalingIterRow,clusterDistanceScalingIterCol]\
*clusterSizeArray[clusterDistanceScalingIterRow]*clusterSizeArray[clusterDistanceScalingIterCol]
minDistanceBetweenClusters=np.amin(scaledDistanceBetweenClusters[scaledDistanceBetweenClusters!=0])
clusterToMerge1=np.where(scaledDistanceBetweenClusters==minDistanceBetweenClusters)[0][0]
clusterToMerge2=np.where(scaledDistanceBetweenClusters==minDistanceBetweenClusters)[1][0]
decimalFeature[decimalFeature==clusterToMerge1]=clusterToMerge2
currentClusterNumber=currentClusterNumber-1
currentClusters=np.unique(decimalFeature)
decimalFeatureNew=np.copy(decimalFeature)
for decimalFeatureValReplaceIter in range(len(currentClusters)):
decimalFeatureNew[decimalFeature==currentClusters[decimalFeatureValReplaceIter]]=decimalFeatureValReplaceIter
decimalFeature=np.copy(decimalFeatureNew)
decimalFeature=decimalFeature+1 #adding 1 so that 0 of changed region does not get mixed with 0 of the background
resultCluster=np.copy(decimalFeature)
else:
sys.exit('Clustering strategy not recognized. Multiple CD aborted')
#obtaining multiple CD result image
multipleChangeOutputMap=np.zeros(cdMap.shape,dtype='uint8')
for multipleChangeOutputIter in range(0,len(resultCluster)):
multipleChangeOutputMap[changePixelsAreaAnalyzedRow[multipleChangeOutputIter],\
changePixelsAreaAnalyzedCol[multipleChangeOutputIter]]=resultCluster[multipleChangeOutputIter]
#Applying mode filtering on the result
multipleChangeOutputMap= (filters.rank.modal(multipleChangeOutputMap, morphology.disk(3),mask=cdMap))*cdMap
##Assigning colors to the multiple CD output map for saving as RGB
labelColours = np.random.randint(255,size=(100,3))
labelColours[0,:]=[0,0,0]
labelColours[1,:]=[255,0,0]
labelColours[2,:]=[0,0,255]
labelColours[3,:]=[0,255,0]
labelColours[4,:]=[255,0,255]
labelColours[5,:]=[255,255,20]
labelColours[6,:]=[255,100,20]
labelColours[7,:]=[100,100,255]
labelColours[8,:]=[100,255,255]
multipleChangeOutputMapRGB = np.array([labelColours[ c ] for c in multipleChangeOutputMap])
##Saving the multiple CD output maps (a .mat file and a .png file)
sio.savemat(resultDirectory+'./multipleCdResult.mat', mdict={'multipleChangeOutputMap': multipleChangeOutputMap})
cv.imwrite(resultDirectory+'multipleCdResult.png',multipleChangeOutputMapRGB)