|
| 1 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 2 | +% % |
| 3 | +% SU2 configuration file % |
| 4 | +% Case description: Supersonic flow over a wedge in a channel. % |
| 5 | +% Author: Thomas D. Economon % |
| 6 | +% Institution: Stanford University % |
| 7 | +% Date: 2012.10.07 % |
| 8 | +% File Version 5.0.0 "Raven" % |
| 9 | +% % |
| 10 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 11 | + |
| 12 | +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% |
| 13 | +% |
| 14 | +% Physical governing equations (EULER, NAVIER_STOKES, |
| 15 | +% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, |
| 16 | +% POISSON_EQUATION) |
| 17 | +SOLVER= RANS |
| 18 | +KIND_TURB_MODEL= SA |
| 19 | +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) |
| 20 | +MATH_PROBLEM= DIRECT |
| 21 | +% Restart solution (NO, YES) |
| 22 | +RESTART_SOL= NO |
| 23 | + |
| 24 | +% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% |
| 25 | +% |
| 26 | +% Mach number (non-dimensional, based on the free-stream values) |
| 27 | +MACH_NUMBER= 2.5 |
| 28 | +% |
| 29 | +% Angle of attack (degrees) |
| 30 | +AOA= 0.0 |
| 31 | +% |
| 32 | +% Side-slip angle (degrees) |
| 33 | +SIDESLIP_ANGLE= 0.0 |
| 34 | +% |
| 35 | +INIT_OPTION= REYNOLDS |
| 36 | +% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) |
| 37 | +%FREESTREAM_PRESSURE= 1e6 |
| 38 | +% |
| 39 | +% Free-stream temperature (288.15 K by default) |
| 40 | +FREESTREAM_TEMPERATURE= 500 |
| 41 | +REYNOLDS_NUMBER= 6e7 |
| 42 | +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% |
| 43 | +% |
| 44 | +% Reference origin for moment computation |
| 45 | +REF_ORIGIN_MOMENT_X = 0.25 |
| 46 | +REF_ORIGIN_MOMENT_Y = 0.00 |
| 47 | +REF_ORIGIN_MOMENT_Z = 0.00 |
| 48 | +% |
| 49 | +% Reference length for pitching, rolling, and yawing non-dimensional moment |
| 50 | +REF_LENGTH= 1.0 |
| 51 | +% |
| 52 | +% Reference area for force coefficients (0 implies automatic calculation) |
| 53 | +REF_AREA= 1.0 |
| 54 | +FLUID_MODEL= COOLPROP |
| 55 | +FLUID_NAME = Nitrogen |
| 56 | +VISCOSITY_MODEL= COOLPROP |
| 57 | +CONDUCTIVITY_MODEL= CONSTANT_COOLPROP |
| 58 | +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% |
| 59 | +% |
| 60 | +% Euler wall boundary marker(s) (NONE = no marker) |
| 61 | +MARKER_EULER= ( upper, lower ) |
| 62 | +MARKER_RIEMANN= (inlet, STATIC_SUPERSONIC_INFLOW_PT, 1e6, 500, 2.5, 0.0, 0.0, outlet, STATIC_PRESSURE, 1e6, 0.0, 0.0, 0.0, 0.0) |
| 63 | +%MARKER_SUPERSONIC_INLET= ( inlet, 300.0, 100000.0, 695.4290761824674, 0.0, 0.0 ) |
| 64 | +%MARKER_OUTLET= ( outlet, 10000.0 ) |
| 65 | +% |
| 66 | +% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated |
| 67 | +MARKER_MONITORING= ( upper, lower ) |
| 68 | + |
| 69 | +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% |
| 70 | +% |
| 71 | +% Numerical method for spatial gradients (GREEN_GAUSS, LEAST_SQUARES, |
| 72 | +% WEIGHTED_LEAST_SQUARES) |
| 73 | +NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES |
| 74 | +% |
| 75 | +% Courant-Friedrichs-Lewy condition of the finest grid |
| 76 | +CFL_NUMBER= 1.0 |
| 77 | +% |
| 78 | +% Adaptive CFL number (NO, YES) |
| 79 | +CFL_ADAPT= NO |
| 80 | +% |
| 81 | +% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, |
| 82 | +% CFL max value ) |
| 83 | +CFL_ADAPT_PARAM= ( 0.1, 2.0, 5.0, 1e10 ) |
| 84 | +% |
| 85 | +% Runge-Kutta alpha coefficients |
| 86 | +RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) |
| 87 | +% |
| 88 | +% Number of total iterations |
| 89 | +ITER= 5000 |
| 90 | +% |
| 91 | +% Linear solver for the implicit formulation (BCGSTAB, FGMRES) |
| 92 | +LINEAR_SOLVER= FGMRES |
| 93 | +% |
| 94 | +% Preconditioner of the Krylov linear solver (ILU, JACOBI, LINELET, LU_SGS) |
| 95 | +LINEAR_SOLVER_PREC= ILU |
| 96 | +% |
| 97 | +% Min error of the linear solver for the implicit formulation |
| 98 | +LINEAR_SOLVER_ERROR= 1E-6 |
| 99 | +% |
| 100 | +% Max number of iterations of the linear solver for the implicit formulation |
| 101 | +LINEAR_SOLVER_ITER= 20 |
| 102 | + |
| 103 | +% -------------------------- MULTIGRID PARAMETERS -----------------------------% |
| 104 | +% |
| 105 | +% Multi-Grid Levels (0 = no multi-grid) |
| 106 | +MGLEVEL= 0 |
| 107 | +% |
| 108 | +% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) |
| 109 | +MGCYCLE= W_CYCLE |
| 110 | +% |
| 111 | +% Multi-grid pre-smoothing level |
| 112 | +MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) |
| 113 | +% |
| 114 | +% Multi-grid post-smoothing level |
| 115 | +MG_POST_SMOOTH= ( 0, 0, 0, 0 ) |
| 116 | +% |
| 117 | +% Jacobi implicit smoothing of the correction |
| 118 | +MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) |
| 119 | +% |
| 120 | +% Damping factor for the residual restriction |
| 121 | +MG_DAMP_RESTRICTION= 1.0 |
| 122 | +% |
| 123 | +% Damping factor for the correction prolongation |
| 124 | +MG_DAMP_PROLONGATION= 1.0 |
| 125 | + |
| 126 | +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% |
| 127 | +% |
| 128 | +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, |
| 129 | +% TURKEL_PREC, MSW) |
| 130 | +CONV_NUM_METHOD_FLOW= HLLC |
| 131 | +% |
| 132 | +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. |
| 133 | +% Required for 2nd order upwind schemes (NO, YES) |
| 134 | +MUSCL_FLOW= YES |
| 135 | +% |
| 136 | +% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, |
| 137 | +% BARTH_JESPERSEN, VAN_ALBADA_EDGE) |
| 138 | +SLOPE_LIMITER_FLOW= NONE |
| 139 | +% |
| 140 | +% Coefficient for the limiter (smooth regions) |
| 141 | +VENKAT_LIMITER_COEFF= 0.006 |
| 142 | +% |
| 143 | +% 2nd and 4th order artificial dissipation coefficients |
| 144 | +JST_SENSOR_COEFF= ( 0.5, 0.02 ) |
| 145 | +% |
| 146 | +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) |
| 147 | +TIME_DISCRE_FLOW= EULER_IMPLICIT |
| 148 | +% Turbulene model |
| 149 | +CONV_NUM_METHOD_TURB= SCALAR_UPWIND |
| 150 | +% --------------------------- CONVERGENCE PARAMETERS --------------------------% |
| 151 | +% |
| 152 | +% Convergence criteria (CAUCHY, RESIDUAL) |
| 153 | +CONV_FIELD= RMS_DENSITY |
| 154 | +% |
| 155 | +% Min value of the residual (log10 of the residual) |
| 156 | +CONV_RESIDUAL_MINVAL= -20 |
| 157 | +% |
| 158 | +% Start convergence criteria at iteration number |
| 159 | +CONV_STARTITER= 10 |
| 160 | +% |
| 161 | +% Number of elements to apply the criteria |
| 162 | +CONV_CAUCHY_ELEMS= 100 |
| 163 | +% |
| 164 | +% Epsilon to control the series convergence |
| 165 | +CONV_CAUCHY_EPS= 1E-10 |
| 166 | + |
| 167 | +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% |
| 168 | +% |
| 169 | +% Mesh input file |
| 170 | +MESH_FILENAME= mesh.su2 |
| 171 | +% |
| 172 | +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) |
| 173 | +MESH_FORMAT= SU2 |
| 174 | +% |
| 175 | +% Mesh output file |
| 176 | +MESH_OUT_FILENAME= mesh_out.su2 |
| 177 | +% |
| 178 | +% Restart flow input file |
| 179 | +SOLUTION_FILENAME= solution_flow.dat |
| 180 | +% |
| 181 | +% Restart adjoint input file |
| 182 | +SOLUTION_ADJ_FILENAME= solution_adj.dat |
| 183 | +% |
| 184 | +% Output tabular format (CSV, TECPLOT) |
| 185 | +TABULAR_FORMAT= CSV |
| 186 | +% |
| 187 | +% Output file convergence history (w/o extension) |
| 188 | +CONV_FILENAME= history |
| 189 | +% |
| 190 | +% Output file restart flow |
| 191 | +RESTART_FILENAME= restart_flow.dat |
| 192 | +% |
| 193 | +% Output file restart adjoint |
| 194 | +RESTART_ADJ_FILENAME= restart_adj.dat |
| 195 | +% |
| 196 | +% Output file flow (w/o extension) variables |
| 197 | +VOLUME_FILENAME= flow |
| 198 | +% |
| 199 | +% Output file adjoint (w/o extension) variables |
| 200 | +VOLUME_ADJ_FILENAME= adjoint |
| 201 | +% |
| 202 | +% Output objective function gradient (using continuous adjoint) |
| 203 | +GRAD_OBJFUNC_FILENAME= of_grad.dat |
| 204 | +% |
| 205 | +% Output file surface flow coefficient (w/o extension) |
| 206 | +SURFACE_FILENAME= surface_flow |
| 207 | +% |
| 208 | +% Output file surface adjoint coefficient (w/o extension) |
| 209 | +SURFACE_ADJ_FILENAME= surface_adjoint |
| 210 | +% |
| 211 | +% Writing solution file frequency |
| 212 | +OUTPUT_WRT_FREQ= 10 |
| 213 | +% |
| 214 | +% Writing convergence history frequency |
| 215 | +SCREEN_WRT_FREQ_INNER= 1 |
| 216 | +% |
| 217 | +% Screen output |
| 218 | +SCREEN_OUTPUT=(INNER_ITER, WALL_TIME, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) |
| 219 | + |
| 220 | +% ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% |
| 221 | +% |
| 222 | +% |
| 223 | +% Kind of deformation (NO_DEFORMATION, SCALE_GRID, TRANSLATE_GRID, ROTATE_GRID, |
| 224 | +% FFD_SETTING, FFD_NACELLE, |
| 225 | +% FFD_CONTROL_POINT, FFD_CAMBER, FFD_THICKNESS, FFD_TWIST |
| 226 | +% FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D, |
| 227 | +% FFD_TWIST_2D, HICKS_HENNE, SURFACE_BUMP, SURFACE_FILE) |
| 228 | +DV_KIND= SCALE_GRID |
| 229 | +% |
| 230 | +% - NO_DEFORMATION ( 1.0 ) |
| 231 | +% - TRANSLATE_GRID ( x_Disp, y_Disp, z_Disp ), as a unit vector |
| 232 | +% - ROTATE_GRID ( x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) axis, DV_VALUE in deg. |
| 233 | +% - SCALE_GRID ( 1.0 ) |
| 234 | +DV_PARAM= ( 1.0 ) |
| 235 | +% |
| 236 | +% Value of the deformation |
| 237 | +DV_VALUE= 10.0 |
| 238 | + |
0 commit comments