-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_skeleton.py
468 lines (342 loc) · 20 KB
/
model_skeleton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import os
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
class ParserModel(nn.Module):
def __init__(self, config, word_embeddings=None, pos_embeddings=None,
dep_embeddings=None):
super(ParserModel, self).__init__()
self.config = config
# These are the hyper-parameters for choosing how many embeddings to
# encode in the input layer. See the last paragraph of 3.1
n_w = config.word_features_types # 18
n_p = config.pos_features_types # 18
n_d = config.dep_features_types # 12
# Copy the Embedding data that we'll be using in the model. Note that the
# model gets these in the constructor so that the embeddings can come
# from anywhere (the model is agnostic to the source of the embeddings).
self.word_embeddings = word_embeddings # 39550 * 50
self.pos_embeddings = pos_embeddings # TODO # 48 * 50
self.dep_embeddings = dep_embeddings # 42 * 50
# Create the first layer of the network that transform the input data
# (consisting of embeddings of words, their corresponding POS tags, and
# the arc labels) to the hidden layer raw outputs.
# TODO
self.linear1 = nn.Linear((n_w + n_p + n_d) * self.config.embedding_dim, self.config.l1_hidden_size)
# After the activation of the hidden layer, you'll be randomly zero-ing
# out a percentage of the activations, which is a process known as
# "Dropout". Dropout helps the model avoid looking at the activation of
# one particular neuron and be more robust. (In essence, dropout is
# turning the one network into an *ensemble* of networks). Create a
# Dropout layer here that we'll use later in the forward() call.
# TODO
self.dropout = nn.Dropout(self.config.keep_prob)
# Create the output layer that maps the activation of the hidden layer to
# the output classes (i.e., the valid transitions)
# TODO
self.linear2 = nn.Linear(self.config.l1_hidden_size, self.config.num_classes)
# Initialize the weights of both layers
self.init_weights()
def init_weights(self):
# initialize each layer's weights to be uniformly distributed within this
# range of +/-initrange. This initialization ensures the weights have something to
# start with for computing gradient descent and generally leads to
# faster convergence.
initrange = 0.1
self.linear1.weight.data.uniform_(-initrange, initrange)
self.linear1.bias.data.zero_()
self.linear2.weight.data.uniform_(-initrange, initrange)
self.linear2.bias.data.zero_()
def lookup_embeddings(self, word_indices, pos_indices, dep_indices, keep_pos = 1):
# Based on the IDs, look up the embeddings for each thing we need. Note
# that the indices are a list of which embeddings need to be returned.
# TODO
w_embeddings = self.word_embeddings(word_indices.long())
p_embeddings = self.pos_embeddings(pos_indices.long())
d_embeddings = self.dep_embeddings(dep_indices.long())
return w_embeddings, p_embeddings, d_embeddings
def forward(self, word_indices, pos_indices, dep_indices):
"""
Computes the next transition step (shift, reduce-left, reduce-right)
based on the current state of the input.
The indices here represent the words/pos/dependencies in the current
context, which we'll need to turn into vectors.
"""
# Look up the embeddings for this prediction. Note that word_indices is
# the list of certain words currently on the stack and buffer, rather
# than a single word
# TODO
w_embeddings, p_embeddings, d_embeddings = self.lookup_embeddings(word_indices, pos_indices, dep_indices)
# Since we're converting lists of indices, we're getting a matrix back
# out (each index becomes a vector). We need to turn these into
# single-dimensional vector (Flatten each of the embeddings into a
# single dimension). Note that the first dimension is the batch. For
# example, if we have a batch size of 2, 3 words per context, and 5
# dimensions per embedding, word_embeddings should be tensor with size
# (2,3,5). We need it to be a tensor with size (2,15), which makes the
# input just like that flat input vector you see in the network diagram.
#
# HINT: you don't need to copy data here, only reshape the tensor.
# Functions like "view" (similar to numpy's "reshape" function will be
# useful here.
# TODO
w_embeddings = w_embeddings.view(-1, self.config.embedding_dim * self.config.word_features_types)
p_embeddings = p_embeddings.view(-1, self.config.embedding_dim * self.config.pos_features_types)
d_embeddings = d_embeddings.view(-1, self.config.embedding_dim * self.config.dep_features_types)
# Compute the raw hidden layer activations from the concatentated input
# embeddings.
#
# NOTE: if you're attempting the optional parts where you want to
# compute separate weight matrices for each type of input, you'll need
# do this step for each one!
# TODO
concat_input_embeddings = torch.cat((w_embeddings, p_embeddings, d_embeddings), dim=1)
raw_hidden_output = self.linear1(concat_input_embeddings)
# Compute the cubic activation function here.
#
# NOTE: Pytorch doesn't have a cubic activation function in the library
# TODO
activated_hidden_output = raw_hidden_output.pow(3)
# Now do dropout for final activations of the first hidden layer
# TODO
dropout_hidden_output = self.dropout(activated_hidden_output)
# Multiply the activation of the first hidden layer by the weights of
# the second hidden layer and pass that through a ReLU non-linearity for
# the final output activations.
#
# NOTE 1: this output does not need to be pushed through a softmax if
# you're going to evaluate the output using the CrossEntropy loss
# function, which will compute the softmax intrinsically as a part of
# its optimization when computing the loss.
# TODO
raw_final_output = self.linear2(dropout_hidden_output)
output = F.relu(raw_final_output)
return output
class TwoHiddenParserModel(nn.Module):
def __init__(self, config, word_embeddings=None, pos_embeddings=None,
dep_embeddings=None):
super(TwoHiddenParserModel, self).__init__()
self.config = config
# These are the hyper-parameters for choosing how many embeddings to
# encode in the input layer. See the last paragraph of 3.1
n_w = config.word_features_types # 18
n_p = config.pos_features_types # 18
n_d = config.dep_features_types # 12
# Copy the Embedding data that we'll be using in the model. Note that the
# model gets these in the constructor so that the embeddings can come
# from anywhere (the model is agnostic to the source of the embeddings).
self.word_embeddings = word_embeddings # 39550 * 50
self.pos_embeddings = pos_embeddings # TODO # 48 * 50
self.dep_embeddings = dep_embeddings # 42 * 50
# Create the first layer of the network that transform the input data
# (consisting of embeddings of words, their corresponding POS tags, and
# the arc labels) to the hidden layer raw outputs.
# TODO
self.linear1 = nn.Linear((n_w + n_p + n_d) * self.config.embedding_dim, self.config.l1_hidden_size)
self.dropout1 = nn.Dropout(self.config.keep_prob)
# After the activation of the hidden layer, you'll be randomly zero-ing
# out a percentage of the activations, which is a process known as
# "Dropout". Dropout helps the model avoid looking at the activation of
# one particular neuron and be more robust. (In essence, dropout is
# turning the one network into an *ensemble* of networks). Create a
# Dropout layer here that we'll use later in the forward() call.
# TODO
self.linear2 = nn.Linear(self.config.l1_hidden_size, self.config.l2_hidden_size)
self.dropout2 = nn.Dropout(self.config.keep_prob)
# Create the output layer that maps the activation of the hidden layer to
# the output classes (i.e., the valid transitions)
# TODO
self.linear3 = nn.Linear(self.config.l2_hidden_size, self.config.num_classes)
# Initialize the weights of both layers
self.init_weights()
def init_weights(self):
# initialize each layer's weights to be uniformly distributed within this
# range of +/-initrange. This initialization ensures the weights have something to
# start with for computing gradient descent and generally leads to
# faster convergence.
initrange = 0.1
self.linear1.weight.data.uniform_(-initrange, initrange)
self.linear1.bias.data.zero_()
self.linear2.weight.data.uniform_(-initrange, initrange)
self.linear2.bias.data.zero_()
self.linear3.weight.data.uniform_(-initrange, initrange)
self.linear3.bias.data.zero_()
def lookup_embeddings(self, word_indices, pos_indices, dep_indices, keep_pos = 1):
# Based on the IDs, look up the embeddings for each thing we need. Note
# that the indices are a list of which embeddings need to be returned.
# TODO
w_embeddings = self.word_embeddings(word_indices.long())
p_embeddings = self.pos_embeddings(pos_indices.long())
d_embeddings = self.dep_embeddings(dep_indices.long())
return w_embeddings, p_embeddings, d_embeddings
def forward(self, word_indices, pos_indices, dep_indices):
"""
Computes the next transition step (shift, reduce-left, reduce-right)
based on the current state of the input.
The indices here represent the words/pos/dependencies in the current
context, which we'll need to turn into vectors.
"""
# Look up the embeddings for this prediction. Note that word_indices is
# the list of certain words currently on the stack and buffer, rather
# than a single word
# TODO
w_embeddings, p_embeddings, d_embeddings = self.lookup_embeddings(word_indices, pos_indices, dep_indices)
# Since we're converting lists of indices, we're getting a matrix back
# out (each index becomes a vector). We need to turn these into
# single-dimensional vector (Flatten each of the embeddings into a
# single dimension). Note that the first dimension is the batch. For
# example, if we have a batch size of 2, 3 words per context, and 5
# dimensions per embedding, word_embeddings should be tensor with size
# (2,3,5). We need it to be a tensor with size (2,15), which makes the
# input just like that flat input vector you see in the network diagram.
#
# HINT: you don't need to copy data here, only reshape the tensor.
# Functions like "view" (similar to numpy's "reshape" function will be
# useful here.
# TODO
w_embeddings = w_embeddings.view(-1, self.config.embedding_dim * self.config.word_features_types)
p_embeddings = p_embeddings.view(-1, self.config.embedding_dim * self.config.pos_features_types)
d_embeddings = d_embeddings.view(-1, self.config.embedding_dim * self.config.dep_features_types)
# Compute the raw hidden layer activations from the concatentated input
# embeddings.
#
# NOTE: if you're attempting the optional parts where you want to
# compute separate weight matrices for each type of input, you'll need
# do this step for each one!
# TODO
concat_input_embeddings = torch.cat((w_embeddings, p_embeddings, d_embeddings), dim=1)
raw_hidden_output = self.linear1(concat_input_embeddings)
# Compute the cubic activation function here.
#
# NOTE: Pytorch doesn't have a cubic activation function in the library
# TODO
activated_hidden_output = F.relu(raw_hidden_output)
# Now do dropout for final activations of the first hidden layer
# TODO
dropout_hidden_output = self.dropout1(activated_hidden_output)
raw_hidden_output = self.linear2(dropout_hidden_output)
activated_hidden_output = F.relu(raw_hidden_output)
dropout_hidden_output = self.dropout2(activated_hidden_output)
# Multiply the activation of the first hidden layer by the weights of
# the second hidden layer and pass that through a ReLU non-linearity for
# the final output activations.
#
# NOTE 1: this output does not need to be pushed through a softmax if
# you're going to evaluate the output using the CrossEntropy loss
# function, which will compute the softmax intrinsically as a part of
# its optimization when computing the loss.
# TODO
raw_final_output = self.linear3(dropout_hidden_output)
output = F.relu(raw_final_output)
return output
class ReluParserModel(nn.Module):
def __init__(self, config, word_embeddings=None, pos_embeddings=None,
dep_embeddings=None):
super(ReluParserModel, self).__init__()
self.config = config
# These are the hyper-parameters for choosing how many embeddings to
# encode in the input layer. See the last paragraph of 3.1
n_w = config.word_features_types # 18
n_p = config.pos_features_types # 18
n_d = config.dep_features_types # 12
# Copy the Embedding data that we'll be using in the model. Note that the
# model gets these in the constructor so that the embeddings can come
# from anywhere (the model is agnostic to the source of the embeddings).
self.word_embeddings = word_embeddings # 39550 * 50
self.pos_embeddings = pos_embeddings # TODO # 48 * 50
self.dep_embeddings = dep_embeddings # 42 * 50
# Create the first layer of the network that transform the input data
# (consisting of embeddings of words, their corresponding POS tags, and
# the arc labels) to the hidden layer raw outputs.
# TODO
self.linear1 = nn.Linear((n_w + n_p + n_d) * self.config.embedding_dim, self.config.l1_hidden_size)
# After the activation of the hidden layer, you'll be randomly zero-ing
# out a percentage of the activations, which is a process known as
# "Dropout". Dropout helps the model avoid looking at the activation of
# one particular neuron and be more robust. (In essence, dropout is
# turning the one network into an *ensemble* of networks). Create a
# Dropout layer here that we'll use later in the forward() call.
# TODO
self.dropout = nn.Dropout(self.config.keep_prob)
# Create the output layer that maps the activation of the hidden layer to
# the output classes (i.e., the valid transitions)
# TODO
self.linear2 = nn.Linear(self.config.l1_hidden_size, self.config.num_classes)
# Initialize the weights of both layers
self.init_weights()
def init_weights(self):
# initialize each layer's weights to be uniformly distributed within this
# range of +/-initrange. This initialization ensures the weights have something to
# start with for computing gradient descent and generally leads to
# faster convergence.
initrange = 0.1
self.linear1.weight.data.uniform_(-initrange, initrange)
self.linear1.bias.data.zero_()
self.linear2.weight.data.uniform_(-initrange, initrange)
self.linear2.bias.data.zero_()
def lookup_embeddings(self, word_indices, pos_indices, dep_indices, keep_pos = 1):
# Based on the IDs, look up the embeddings for each thing we need. Note
# that the indices are a list of which embeddings need to be returned.
# TODO
w_embeddings = self.word_embeddings(word_indices.long())
p_embeddings = self.pos_embeddings(pos_indices.long())
d_embeddings = self.dep_embeddings(dep_indices.long())
return w_embeddings, p_embeddings, d_embeddings
def forward(self, word_indices, pos_indices, dep_indices):
"""
Computes the next transition step (shift, reduce-left, reduce-right)
based on the current state of the input.
The indices here represent the words/pos/dependencies in the current
context, which we'll need to turn into vectors.
"""
# Look up the embeddings for this prediction. Note that word_indices is
# the list of certain words currently on the stack and buffer, rather
# than a single word
# TODO
w_embeddings, p_embeddings, d_embeddings = self.lookup_embeddings(word_indices, pos_indices, dep_indices)
# Since we're converting lists of indices, we're getting a matrix back
# out (each index becomes a vector). We need to turn these into
# single-dimensional vector (Flatten each of the embeddings into a
# single dimension). Note that the first dimension is the batch. For
# example, if we have a batch size of 2, 3 words per context, and 5
# dimensions per embedding, word_embeddings should be tensor with size
# (2,3,5). We need it to be a tensor with size (2,15), which makes the
# input just like that flat input vector you see in the network diagram.
#
# HINT: you don't need to copy data here, only reshape the tensor.
# Functions like "view" (similar to numpy's "reshape" function will be
# useful here.
# TODO
w_embeddings = w_embeddings.view(-1, self.config.embedding_dim * self.config.word_features_types)
p_embeddings = p_embeddings.view(-1, self.config.embedding_dim * self.config.pos_features_types)
d_embeddings = d_embeddings.view(-1, self.config.embedding_dim * self.config.dep_features_types)
# Compute the raw hidden layer activations from the concatentated input
# embeddings.
#
# NOTE: if you're attempting the optional parts where you want to
# compute separate weight matrices for each type of input, you'll need
# do this step for each one!
# TODO
concat_input_embeddings = torch.cat((w_embeddings, p_embeddings, d_embeddings), dim=1)
raw_hidden_output = self.linear1(concat_input_embeddings)
# Compute the cubic activation function here.
#
# NOTE: Pytorch doesn't have a cubic activation function in the library
# TODO
activated_hidden_output = F.relu(raw_hidden_output)
# Now do dropout for final activations of the first hidden layer
# TODO
dropout_hidden_output = self.dropout(activated_hidden_output)
# Multiply the activation of the first hidden layer by the weights of
# the second hidden layer and pass that through a ReLU non-linearity for
# the final output activations.
#
# NOTE 1: this output does not need to be pushed through a softmax if
# you're going to evaluate the output using the CrossEntropy loss
# function, which will compute the softmax intrinsically as a part of
# its optimization when computing the loss.
# TODO
raw_final_output = self.linear2(dropout_hidden_output)
output = F.relu(raw_final_output)
return output