From 65a6d540fd01c714d9ad7b68bd79655a4eabb51a Mon Sep 17 00:00:00 2001 From: stemangiola Date: Fri, 10 May 2024 05:18:32 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20stemangi?= =?UTF-8?q?ola/tidySingleCellExperiment@8c092dbe8cb1137b2e34e9fc51f8ad69ac?= =?UTF-8?q?c080cf=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 404.html | 2 +- articles/index.html | 2 +- articles/introduction.html | 192 +++++++++--------- .../figure-html/plot2-1.png | Bin 46943 -> 46828 bytes .../figure-html/unnamed-chunk-12-1.png | Bin 120115 -> 120020 bytes authors.html | 6 +- index.html | 187 ++++++++--------- pkgdown.yml | 4 +- reference/add_class.html | 2 +- reference/aggregate_cells.html | 2 +- reference/arrange.html | 28 +-- reference/as_tibble.html | 28 +-- reference/bind_rows.html | 50 ++--- reference/cell_type_df.html | 2 +- reference/count.html | 4 +- reference/distinct.html | 4 +- reference/drop_class.html | 2 +- reference/extract.html | 28 +-- reference/filter.html | 28 +-- reference/formatting.html | 28 +-- reference/full_join.html | 28 +-- reference/ggplot.html | 6 +- reference/glimpse.html | 2 +- reference/group_by.html | 28 +-- reference/group_split.html | 54 ++--- reference/index.html | 2 +- reference/inner_join.html | 28 +-- reference/join_features.html | 28 +-- reference/join_transcripts.html | 2 +- reference/left_join.html | 54 ++--- reference/mutate.html | 28 +-- reference/nest.html | 28 +-- reference/pbmc_small.html | 2 +- reference/pbmc_small_nested_interactions.html | 2 +- reference/pipe.html | 2 +- reference/pivot_longer.html | 28 +-- reference/plot_ly.html | 4 +- reference/pull.html | 2 +- reference/quo_names.html | 2 +- reference/rename.html | 30 +-- reference/return_arguments_of.html | 2 +- reference/right_join.html | 28 +-- reference/rowwise.html | 2 +- reference/sample_n.html | 48 ++--- reference/select.html | 26 +-- reference/separate.html | 28 +-- reference/slice.html | 152 +++++++------- reference/summarise.html | 4 +- reference/tbl_format_header.html | 2 +- reference/tidy.html | 28 +-- reference/unite.html | 28 +-- reference/unnest.html | 28 +-- 52 files changed, 670 insertions(+), 665 deletions(-) diff --git a/404.html b/404.html index a05721c..b0f3951 100644 --- a/404.html +++ b/404.html @@ -32,7 +32,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/articles/index.html b/articles/index.html index 7ec0ec1..5e0444f 100644 --- a/articles/index.html +++ b/articles/index.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/articles/introduction.html b/articles/introduction.html index 145e307..fd0682f 100644 --- a/articles/introduction.html +++ b/articles/introduction.html @@ -33,7 +33,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -209,22 +209,22 @@

Data representation of

It looks like a tibble

 pbmc_small_tidy
-
## # A SingleCellExperiment-tibble abstraction: 80 × 17
+
## # A SingleCellExperiment-tibble abstraction: 80 x 17
 ## # Features=230 | Cells=80 | Assays=counts, logcounts
 ##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 ##    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-##  1 ATGC… SeuratPro…         70           47 0               A             g2    
-##  2 CATG… SeuratPro…         85           52 0               A             g1    
-##  3 GAAC… SeuratPro…         87           50 1               B             g2    
-##  4 TGAC… SeuratPro…        127           56 0               A             g2    
-##  5 AGTC… SeuratPro…        173           53 0               A             g2    
-##  6 TCTG… SeuratPro…         70           48 0               A             g1    
-##  7 TGGT… SeuratPro…         64           36 0               A             g1    
-##  8 GCAG… SeuratPro…         72           45 0               A             g1    
-##  9 GATA… SeuratPro…         52           36 0               A             g1    
-## 10 AATG… SeuratPro…        100           41 0               A             g1    
-## # ℹ 70 more rows
-## # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+##  1 ATGC~ SeuratPro~         70           47 0               A             g2    
+##  2 CATG~ SeuratPro~         85           52 0               A             g1    
+##  3 GAAC~ SeuratPro~         87           50 1               B             g2    
+##  4 TGAC~ SeuratPro~        127           56 0               A             g2    
+##  5 AGTC~ SeuratPro~        173           53 0               A             g2    
+##  6 TCTG~ SeuratPro~         70           48 0               A             g1    
+##  7 TGGT~ SeuratPro~         64           36 0               A             g1    
+##  8 GCAG~ SeuratPro~         72           45 0               A             g1    
+##  9 GATA~ SeuratPro~         52           36 0               A             g1    
+## 10 AATG~ SeuratPro~        100           41 0               A             g1    
+## # i 70 more rows
+## # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 ## #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 ## #   tSNE_2 <dbl>

…but it is a SingleCellExperiment after @@ -283,22 +283,22 @@

Annotation polishing# Reorder to have sample column up front pbmc_small_polished %>% select(sample, everything())

-
## # A SingleCellExperiment-tibble abstraction: 80 × 18
+
## # A SingleCellExperiment-tibble abstraction: 80 x 18
 ## # Features=230 | Cells=80 | Assays=counts, logcounts
 ##    .cell sample orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents
 ##    <chr> <chr>  <fct>           <dbl>        <int> <fct>           <fct>        
-##  1 ATGC… sampl… SeuratPro…         70           47 0               A            
-##  2 CATG… sampl… SeuratPro…         85           52 0               A            
-##  3 GAAC… sampl… SeuratPro…         87           50 1               B            
-##  4 TGAC… sampl… SeuratPro…        127           56 0               A            
-##  5 AGTC… sampl… SeuratPro…        173           53 0               A            
-##  6 TCTG… sampl… SeuratPro…         70           48 0               A            
-##  7 TGGT… sampl… SeuratPro…         64           36 0               A            
-##  8 GCAG… sampl… SeuratPro…         72           45 0               A            
-##  9 GATA… sampl… SeuratPro…         52           36 0               A            
-## 10 AATG… sampl… SeuratPro…        100           41 0               A            
-## # ℹ 70 more rows
-## # ℹ 11 more variables: groups <chr>, RNA_snn_res.1 <fct>, file <chr>,
+##  1 ATGC~ sampl~ SeuratPro~         70           47 0               A            
+##  2 CATG~ sampl~ SeuratPro~         85           52 0               A            
+##  3 GAAC~ sampl~ SeuratPro~         87           50 1               B            
+##  4 TGAC~ sampl~ SeuratPro~        127           56 0               A            
+##  5 AGTC~ sampl~ SeuratPro~        173           53 0               A            
+##  6 TCTG~ sampl~ SeuratPro~         70           48 0               A            
+##  7 TGGT~ sampl~ SeuratPro~         64           36 0               A            
+##  8 GCAG~ sampl~ SeuratPro~         72           45 0               A            
+##  9 GATA~ sampl~ SeuratPro~         52           36 0               A            
+## 10 AATG~ sampl~ SeuratPro~        100           41 0               A            
+## # i 70 more rows
+## # i 11 more variables: groups <chr>, RNA_snn_res.1 <fct>, file <chr>,
 ## #   ident <fct>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>,
 ## #   tSNE_1 <dbl>, tSNE_2 <dbl>
@@ -373,22 +373,22 @@

PreprocessingrunPCA(subset_row=variable_genes) pbmc_small_pca

-
## # A SingleCellExperiment-tibble abstraction: 80 × 18
+
## # A SingleCellExperiment-tibble abstraction: 80 x 18
 ## # Features=230 | Cells=80 | Assays=counts, logcounts
 ##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 ##    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-##  1 ATGC… SeuratPro…         70           47 0               A             g2    
-##  2 CATG… SeuratPro…         85           52 0               A             g1    
-##  3 GAAC… SeuratPro…         87           50 1               B             g2    
-##  4 TGAC… SeuratPro…        127           56 0               A             g2    
-##  5 AGTC… SeuratPro…        173           53 0               A             g2    
-##  6 TCTG… SeuratPro…         70           48 0               A             g1    
-##  7 TGGT… SeuratPro…         64           36 0               A             g1    
-##  8 GCAG… SeuratPro…         72           45 0               A             g1    
-##  9 GATA… SeuratPro…         52           36 0               A             g1    
-## 10 AATG… SeuratPro…        100           41 0               A             g1    
-## # ℹ 70 more rows
-## # ℹ 11 more variables: RNA_snn_res.1 <fct>, file <chr>, sample <chr>,
+##  1 ATGC~ SeuratPro~         70           47 0               A             g2    
+##  2 CATG~ SeuratPro~         85           52 0               A             g1    
+##  3 GAAC~ SeuratPro~         87           50 1               B             g2    
+##  4 TGAC~ SeuratPro~        127           56 0               A             g2    
+##  5 AGTC~ SeuratPro~        173           53 0               A             g2    
+##  6 TCTG~ SeuratPro~         70           48 0               A             g1    
+##  7 TGGT~ SeuratPro~         64           36 0               A             g1    
+##  8 GCAG~ SeuratPro~         72           45 0               A             g1    
+##  9 GATA~ SeuratPro~         52           36 0               A             g1    
+## 10 AATG~ SeuratPro~        100           41 0               A             g1    
+## # i 70 more rows
+## # i 11 more variables: RNA_snn_res.1 <fct>, file <chr>, sample <chr>,
 ## #   ident <fct>, PC1 <dbl>, PC2 <dbl>, PC3 <dbl>, PC4 <dbl>, PC5 <dbl>,
 ## #   tSNE_1 <dbl>, tSNE_2 <dbl>

If a tidyverse-compatible package is not included in the @@ -423,22 +423,22 @@

Clustering# Reorder columns pbmc_small_cluster %>% select(label, everything())

-
## # A SingleCellExperiment-tibble abstraction: 80 × 19
+
## # A SingleCellExperiment-tibble abstraction: 80 x 19
 ## # Features=230 | Cells=80 | Assays=counts, logcounts
 ##    .cell  label orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents
 ##    <chr>  <fct> <fct>           <dbl>        <int> <fct>           <fct>        
-##  1 ATGCC… 2     SeuratPro…         70           47 0               A            
-##  2 CATGG… 2     SeuratPro…         85           52 0               A            
-##  3 GAACC… 2     SeuratPro…         87           50 1               B            
-##  4 TGACT… 1     SeuratPro…        127           56 0               A            
-##  5 AGTCA… 2     SeuratPro…        173           53 0               A            
-##  6 TCTGA… 2     SeuratPro…         70           48 0               A            
-##  7 TGGTA… 1     SeuratPro…         64           36 0               A            
-##  8 GCAGC… 2     SeuratPro…         72           45 0               A            
-##  9 GATAT… 2     SeuratPro…         52           36 0               A            
-## 10 AATGT… 2     SeuratPro…        100           41 0               A            
-## # ℹ 70 more rows
-## # ℹ 12 more variables: groups <chr>, RNA_snn_res.1 <fct>, file <chr>,
+##  1 ATGCC~ 2     SeuratPro~         70           47 0               A            
+##  2 CATGG~ 2     SeuratPro~         85           52 0               A            
+##  3 GAACC~ 2     SeuratPro~         87           50 1               B            
+##  4 TGACT~ 1     SeuratPro~        127           56 0               A            
+##  5 AGTCA~ 2     SeuratPro~        173           53 0               A            
+##  6 TCTGA~ 2     SeuratPro~         70           48 0               A            
+##  7 TGGTA~ 1     SeuratPro~         64           36 0               A            
+##  8 GCAGC~ 2     SeuratPro~         72           45 0               A            
+##  9 GATAT~ 2     SeuratPro~         52           36 0               A            
+## 10 AATGT~ 2     SeuratPro~        100           41 0               A            
+## # i 70 more rows
+## # i 12 more variables: groups <chr>, RNA_snn_res.1 <fct>, file <chr>,
 ## #   sample <chr>, ident <fct>, PC1 <dbl>, PC2 <dbl>, PC3 <dbl>, PC4 <dbl>,
 ## #   PC5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>

And interrogate the output as if it was a regular @@ -447,7 +447,7 @@

Clustering# Count number of cells for each cluster per group pbmc_small_cluster %>% count(groups, label)

-
## # A tibble: 8 × 3
+
## # A tibble: 8 x 3
 ##   groups label     n
 ##   <chr>  <fct> <int>
 ## 1 g1     1        12
@@ -534,22 +534,22 @@ 

Cell type prediction# Reorder columns pbmc_small_cell_type %>% select(cell, first.labels, everything())

-
## # A SingleCellExperiment-tibble abstraction: 80 × 23
+
## # A SingleCellExperiment-tibble abstraction: 80 x 23
 ## # Features=230 | Cells=80 | Assays=counts, logcounts
 ##    cell          first.labels orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8
 ##    <chr>         <chr>        <fct>           <dbl>        <int> <fct>          
-##  1 ATGCCAGAACGA… CD4+ T-cells SeuratPro…         70           47 0              
-##  2 CATGGCCTGTGC… CD8+ T-cells SeuratPro…         85           52 0              
-##  3 GAACCTGATGAA… CD8+ T-cells SeuratPro…         87           50 1              
-##  4 TGACTGGATTCT… CD4+ T-cells SeuratPro…        127           56 0              
-##  5 AGTCAGACTGCA… CD4+ T-cells SeuratPro…        173           53 0              
-##  6 TCTGATACACGT… CD4+ T-cells SeuratPro…         70           48 0              
-##  7 TGGTATCTAAAC… CD4+ T-cells SeuratPro…         64           36 0              
-##  8 GCAGCTCTGTTT… CD4+ T-cells SeuratPro…         72           45 0              
-##  9 GATATAACACGC… CD4+ T-cells SeuratPro…         52           36 0              
-## 10 AATGTTGACAGT… CD4+ T-cells SeuratPro…        100           41 0              
-## # ℹ 70 more rows
-## # ℹ 17 more variables: letter.idents <fct>, groups <chr>, RNA_snn_res.1 <fct>,
+##  1 ATGCCAGAACGA~ CD4+ T-cells SeuratPro~         70           47 0              
+##  2 CATGGCCTGTGC~ CD8+ T-cells SeuratPro~         85           52 0              
+##  3 GAACCTGATGAA~ CD8+ T-cells SeuratPro~         87           50 1              
+##  4 TGACTGGATTCT~ CD4+ T-cells SeuratPro~        127           56 0              
+##  5 AGTCAGACTGCA~ CD4+ T-cells SeuratPro~        173           53 0              
+##  6 TCTGATACACGT~ CD4+ T-cells SeuratPro~         70           48 0              
+##  7 TGGTATCTAAAC~ CD4+ T-cells SeuratPro~         64           36 0              
+##  8 GCAGCTCTGTTT~ CD4+ T-cells SeuratPro~         72           45 0              
+##  9 GATATAACACGC~ CD4+ T-cells SeuratPro~         52           36 0              
+## 10 AATGTTGACAGT~ CD4+ T-cells SeuratPro~        100           41 0              
+## # i 70 more rows
+## # i 17 more variables: letter.idents <fct>, groups <chr>, RNA_snn_res.1 <fct>,
 ## #   file <chr>, sample <chr>, ident <fct>, label <fct>, PC1 <dbl>, PC2 <dbl>,
 ## #   PC3 <dbl>, PC4 <dbl>, PC5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>, UMAP1 <dbl>,
 ## #   UMAP2 <dbl>, UMAP3 <dbl>
@@ -559,7 +559,7 @@

Cell type prediction# Count number of cells for each cell type per cluster pbmc_small_cell_type %>% count(label, first.labels)

-
## # A tibble: 11 × 3
+
## # A tibble: 11 x 3
 ##    label first.labels     n
 ##    <fct> <chr>        <int>
 ##  1 1     CD4+ T-cells     2
@@ -621,7 +621,7 @@ 

Nested analyses nest(data=-cell_class) pbmc_small_nested

-
## # A tibble: 2 × 2
+
## # A tibble: 2 x 2
 ##   cell_class data           
 ##   <chr>      <list>         
 ## 1 lymphoid   <SnglCllE[,40]>
@@ -650,7 +650,7 @@ 

Nested analyses return(.x) })) pbmc_small_nested_reanalysed

-
## # A tibble: 2 × 2
+
## # A tibble: 2 x 2
 ##   cell_class data           
 ##   <chr>      <list>         
 ## 1 lymphoid   <SnglCllE[,40]>
@@ -709,21 +709,21 @@ 

Nested analyses
 data(pbmc_small_nested_interactions)
 pbmc_small_nested_interactions
-
## # A tibble: 100 × 9
+
## # A tibble: 100 x 9
 ##    sample  ligand          receptor ligand.name receptor.name origin destination
 ##    <chr>   <chr>           <chr>    <chr>       <chr>         <chr>  <chr>      
-##  1 sample1 cluster 1.PTMA  cluster… PTMA        VIPR1         clust… cluster 2  
-##  2 sample1 cluster 1.B2M   cluster… B2M         KLRD1         clust… cluster 2  
-##  3 sample1 cluster 1.IL16  cluster… IL16        CD4           clust… cluster 2  
-##  4 sample1 cluster 1.HLA-B cluster… HLA-B       KLRD1         clust… cluster 2  
-##  5 sample1 cluster 1.CALM1 cluster… CALM1       VIPR1         clust… cluster 2  
-##  6 sample1 cluster 1.HLA-E cluster… HLA-E       KLRD1         clust… cluster 2  
-##  7 sample1 cluster 1.GNAS  cluster… GNAS        VIPR1         clust… cluster 2  
-##  8 sample1 cluster 1.B2M   cluster… B2M         HFE           clust… cluster 2  
-##  9 sample1 cluster 1.PTMA  cluster… PTMA        VIPR1         clust… cluster 3  
-## 10 sample1 cluster 1.CALM1 cluster… CALM1       VIPR1         clust… cluster 3  
-## # ℹ 90 more rows
-## # ℹ 2 more variables: interaction.type <chr>, LRscore <dbl>
+## 1 sample1 cluster 1.PTMA cluster~ PTMA VIPR1 clust~ cluster 2 +## 2 sample1 cluster 1.B2M cluster~ B2M KLRD1 clust~ cluster 2 +## 3 sample1 cluster 1.IL16 cluster~ IL16 CD4 clust~ cluster 2 +## 4 sample1 cluster 1.HLA-B cluster~ HLA-B KLRD1 clust~ cluster 2 +## 5 sample1 cluster 1.CALM1 cluster~ CALM1 VIPR1 clust~ cluster 2 +## 6 sample1 cluster 1.HLA-E cluster~ HLA-E KLRD1 clust~ cluster 2 +## 7 sample1 cluster 1.GNAS cluster~ GNAS VIPR1 clust~ cluster 2 +## 8 sample1 cluster 1.B2M cluster~ B2M HFE clust~ cluster 2 +## 9 sample1 cluster 1.PTMA cluster~ PTMA VIPR1 clust~ cluster 3 +## 10 sample1 cluster 1.CALM1 cluster~ CALM1 VIPR1 clust~ cluster 3 +## # i 90 more rows +## # i 2 more variables: interaction.type <chr>, LRscore <dbl>

@@ -751,7 +752,7 @@

Session Info
 sessionInfo()
-
## R version 4.4.0 Patched (2024-04-24 r86483)
+
## R version 4.4.0 (2024-04-24)
 ## Platform: x86_64-pc-linux-gnu
 ## Running under: Ubuntu 22.04.4 LTS
 ## 
@@ -760,12 +761,7 @@ 

Session Info## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 ## ## locale: -## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C -## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 -## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 -## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C -## [9] LC_ADDRESS=C LC_TELEPHONE=C -## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C +## [1] C ## ## time zone: UTC ## tzcode source: system (glibc) @@ -777,7 +773,7 @@

Session Info## other attached packages: ## [1] dittoSeq_1.17.0 Matrix_1.7-0 ## [3] ttservice_0.4.0 tidyr_1.3.1 -## [5] dplyr_1.1.4 tidySingleCellExperiment_1.13.3 +## [5] dplyr_1.1.4 tidySingleCellExperiment_1.15.1 ## [7] tidyHeatmap_1.8.1 GGally_2.2.1 ## [9] purrr_1.0.2 SingleCellSignalR_1.17.0 ## [11] SingleR_2.7.0 celldex_1.15.0 @@ -797,7 +793,7 @@

Session Info## [5] lifecycle_1.0.4 httr2_1.0.1 ## [7] doParallel_1.0.17 edgeR_4.3.0 ## [9] MASS_7.3-60.2 lattice_0.22-6 -## [11] alabaster.base_1.5.0 dendextend_1.17.1 +## [11] alabaster.base_1.5.1 dendextend_1.17.1 ## [13] magrittr_2.0.3 plotly_4.10.4 ## [15] limma_3.61.0 sass_0.4.9 ## [17] rmarkdown_2.26 jquerylib_0.1.4 @@ -819,10 +815,10 @@

Session Info## [49] ellipsis_0.3.2 ggridges_0.5.6 ## [51] survival_3.6-4 iterators_1.0.14 ## [53] systemfonts_1.0.6 foreach_1.5.2 -## [55] tools_4.4.0 ragg_1.3.0 +## [55] tools_4.4.0 ragg_1.3.1 ## [57] Rcpp_1.0.12 glue_1.7.0 -## [59] gridExtra_2.3 SparseArray_1.5.0 -## [61] xfun_0.43 HDF5Array_1.31.6 +## [59] gridExtra_2.3 SparseArray_1.5.1 +## [61] xfun_0.43 HDF5Array_1.33.0 ## [63] gypsum_1.1.0 withr_3.0.0 ## [65] BiocManager_1.30.23 fastmap_1.1.1 ## [67] rhdf5filters_1.17.0 bluster_1.15.0 @@ -858,7 +854,7 @@

Session Info## [127] crayon_1.5.2 paws.common_0.7.2 ## [129] labeling_0.4.3 plyr_1.8.9 ## [131] fs_1.6.4 ggbeeswarm_0.7.2 -## [133] stringi_1.8.3 viridisLite_0.4.2 +## [133] stringi_1.8.4 viridisLite_0.4.2 ## [135] alabaster.se_1.5.0 BiocParallel_1.39.0 ## [137] munsell_0.5.1 Biostrings_2.73.0 ## [139] lazyeval_0.2.2 ExperimentHub_2.13.0 @@ -872,7 +868,7 @@

Session Info

References

-
+
Amezquita, Robert A, Aaron TL Lun, Etienne Becht, Vince J Carey, Lindsay N Carpp, Ludwig Geistlinger, Federico Martini, et al. 2019. diff --git a/articles/introduction_files/figure-html/plot2-1.png b/articles/introduction_files/figure-html/plot2-1.png index 44f9cbabe85d830f2b2aa29cdea9b7642e3bc098..d319270b3ee0f1c1306517c158d49cb64bdcfed4 100644 GIT binary patch delta 16379 zcmbt*byQXD+vZVU^~HQu6h*=S2~k8r8Z5*E2#AD|ucEXdEfO0O6Z9Y@u1qwwBE&sXlFa9&7o}2; z>Ysh)yxY@x!(}Va7W*>_S*3fZmTvxAd7{ka`c3mrx5|0*$xMFU8bwukJ8*SC_^na# zaeZF_`fK`>TYG??WBRdUJzrm&c277-NU)V;Nj3D`W-t6O=hSUYUAvhr?8oXSy9)iH z_3|&rt#5aU_O+Jv^7i8+3QX){iWdltyrI*bYTbt&W@lq2?>Vc^eUN%xAw5;6!Wtl~ zZXCsv-m^7cw!b(lR4m2#ji0o*nk^ffvM)aa#dYh0yG#^H$j;C7{OrE1+qMOYv7M;$ zw(0P*Q)CXIb8WtMOKS2XwMbVaDn-ltUF&o>uU>(JchAyntJvVu52DMgM=2$u|NVeQ z=Y{VYcLp6r1;r_p%zMih{VV2Tr2Ao=>}ylgIm7wQkBupe5vjF|g8_|t4N9zE?G%1J zkNGZ;pTKr|c=wEYd{l3Zn@wLN|8^!@-5pP5d?xQV+s2(9D~{HTaqH}(55JqHP<||h z{#Z?+aDVvt@nfof39%`sSUpNb=EnC_ORIg92VFjK2d((*YdA|twZUqHb6Fcp;N$uZ%Lv-}H6ntNFwB=L2?jI>u3)GZu z7#i`hBVG?%3G0ma1+TY}qEJ3FFP&OT-rLE^Db=#$tnEM}aiJkWuhOpN_s_!ZEG)4< z3*G3SU+z!Vj5GNba%XnDFZA2DZ%)H2HiX9NMc;gS-O*=)b4r5GR_e`7);&EM z8izNI-t8_gja0iq z&G7Jr3$uT%Sz|)9WLnM+*Q?cSs1TT(#*Y;BxX18PAx_~>ePdE4_H}GuyGXW zHe@8&)x^mg>R2s&UT97oi8?SEr+qQ0faRi}P@Ub^gtIzAebQ%zhK9RoW)zC=E-gW9 z&xtgXy6XPA7~8Hd+i$dHtL+vxuf-$UP7YkY(UN(g%!i+-oNT$#oE~M}Q<3dFXSesj znim>#ZH^zVcbR8*YE?ZEwH7&@bIIH=0w;!@Op`2#uJyC{@ynGfr6eScS1ifw-_ zwKd0HqbA~f+SQ_UH`;PV8^$)ViiH{1L~K8GiZZjsx;xROJ*Tct!0Jj>sn9U}qkV9e z*xwXN#HkPK2@1v4tUO4vc_;}>C{N5=<@z?X*C&T&V;J22h|_Z{UHS-x!pY+JdnJXk zN1lg==X;KQLTg8YcGlYz!^&vgyxWQj4}Njae7AVgno?RP@FcBwzqmH*2lI>s-D->7 z1~F!7-{aj?!gfVbN*Hx4g)c5Oj@ri4t<>lvfvTdqnC+LIB?Wx8W)#5bk zN{J|CZPhqUHU5J6;L(MX8IAY$C z`SH>HtNZrsIpI7vX>0rJD(B(Dio>~MguB$@w7yQ}&6BiFIz48nHOI8~+naTN|NU)( z-oR=VXHf3fcV{h|@>qBIL~p1^e|*jmjYG)1<&svq*~?dRj%V$@re_|V^+k>Dq2{Oi{>hni@$gXO*gr$c2uDlA)m6F&>< za_oms$*ulDkgIs}=8c%c=(UGE9UUEMR$X#&+F8|a8giBv=Y*`gzbaG;8&{tpAKIWI zfahrut%ugo+^jX6Hx(3mbtOf4U*cNw{;N1SIE;S(_+U~W`#M4~FnZ(e<3@!KH~JmD z{>1P2jcCIlhvL1$dw3Q2^Tr99dYopsNnP}HG4*t_%Xw36j($R>I~)yG9;Ur|6=vR= zeVx}nFv@Q5dlQ?#lymmOO{{)BRv8Mfk7^dU`VR`=0Ndvv1$NYiXKwAtzT6lH=b_^InX2 z7SpkU^ZVV^>lwFfx$v%Gey)8fXi#AD=FQI2KizK6kCX^GPMR&?5>K8#SDWass|%NB zs*BUo*nQmW+v38U*NYb+IEWa>sUfn&B+u_*K=E0Qg!d;;q(A5<5)79?id-#gHhlI2csFDPI>ZstqRT+8mH zyjg1cU+)rKrx6*dil(Mtl+?gVN(lEa3l)Ug+ENqgF9Qm`M@}*@Feoal3JDXj8}L2d z9i>;0kK*Ig;fp;so*Zb}loiDBMTbIRaVu4fu>h0T|xum6~-LyATC?ac?BW~3h zS=pYMfP)(G@05b2{KW0!w{2a)&4Xm@eBofy5FcmN^`)xz6gf$F0lk`pimgsELW7Z4C~j|e0y_x%+~zcwXl0N6mDvNLqfv6wVO?9-(5foCrS?g z{Q2hFH)TommDiJ%w$|1)t}9lhTC_{m#a>QH+<#C^jL?+#=BqlGko(q0&*k#d9fzvx zVl>uEqDva|{OrdwQHmZEU9D=#vR2EnyOB53?Jq~ACe5{sc9n?>>~f`rIL(aSo@%uh za-OwWn58Gk$;qjd`w88c>!}Em)XK3NRKeQ5`0yvp4dw8k-lctML*X}Kag6;ryR`1e z$jC0j-HTUEuA}&QO=FUNS9kGk4hm)9B-vbkoG>>xpKT~u3=fz0>HqY2n_X~2ypA|m z#7bpaW=_sQZf@?HF)1mj+r4kx)=3a&&fGVs42okFx8pu=;H+A->V=+)z=`>>%9yjy znX`hHs^$5OyT87^%qFj(P@8GlF+aT0GhIG@qSglS zMT2i;o{}A2wsuqc?s!Z*etdhhlxw2P zN6$dKdoZKj+a{8)qP$>fVK~?AFG|Q?|G9#{utoPw0KkqYd4*z&f`y0%JwivNqAT{w z&fBwnk!jXFikt@y7>IbI6tKHYe;6`llenc^RaG^!eghB)dM)~47(4j+04bPuE`C_e3p~x}+i8?xB zA;@BbYNR47SNICoyUiIEdO?+sJvJUJvDR)X_#hI^>Jv73}mve&1K`$jLV-^ zRE|-PlX#w>{N}DFjdJ1xQh0msJa*O;(Q|vGh-px&=K+&0_cx&x6mFj7E+4QbA*OZf z)~x}r{-UglN5@|sq~DrtOK$k~9Xq_~jTM1}IN9%3=O6g5=7r?huhfC|H5A4{QNFoZ zdOq6YpD2HFX55=Iu8hr~nDQ4CANPd){aEqX6EX+-rF3e8McKcf} zZrgV8hiGd{OX}?jlhte1bUSY1=jW%=(B8W%0%P{ey7x{r=xKPcNsgl-n|$>Z5WDp| zWCy=4A3J;SO2ajjkgy;7FJQa5dcUW|_z7FYBWk+DCSS_3T|h-yzgO)nyVLJG$cpgV zT2-RiTG*nEEQ_hPMy{R@5V??$H>sH(GeBWHWNd7Vj|Ux440!kM9e48>itz1UkGTYI zd=~_E5o#Z6h*p!In;fj^tqM(Znz0HG5AW)m2V%HB?QrhgqXXytUJXki=r*Y@Z^|8i ze}A&sy1Kful;HIGLOrB-i7-{-Qo7meAYyT5L)Xv}5-$K(PC`}@nVlL=0Ae-d zwhtFSc-!ZYRs_0P?|5I$>TJcLC)+1Vxq^F9i_nangUtUC{rA1=N}b(6ThEuP>T*HE z-o^l1US=Z(l1ft1P}JhJvy`n{a~+N~ZR1ijYD&JoDaQ^~FYV^fQx3Opqe9?$Yv+awh7(O!Qe2-k-Xp2s zKYy)Vdr(BAu}*-4x^@%G=bCBs05Kj0ifkjW1_@!Nrb!6&HJ@GVJSR;R#42e8%4O}1j` zQx2NJn4rC~vhqpd?TVX;ot@VPTXQsg4(n9w*tdqKrlv{+>P4&aaB=3`vtpvSeq3f7 z${%g$_2-w+5(e1XLuEH}MXdNY;ngd~^Zv)r*F-95n3=^6I@sG!NtD;Tm02$<3!HxV zlWYt!fm0#$?DN_Jg2*WbkW)ju3ijN#;`4bFLL%Fi9%0#0e4X2#v(zN5+xW2TPys5X zw#Od=?03x2T{FWxu*3Joi+>JXP7Zsqb;ajW(}cW;-@kvatUPw@^FL|EHN`6)gKS+` z?pw+$y?8F3MOAF@70?GX@c-$H)IICY62(r;Us$nX#bLR>_q3ukPAtw1ml0Q!7>$Bf ztXk81Z?n`*WnKzJS#=r2o?uYRwlO{*D5lm?;?V$5X*)A|UG1In$vCZy3f0+_Hv<#$ zXXQW?>^v-5GLvG}V_fD2g=c1FqOc#gCz}lGkkc!DJ|RAO-;iC1`=^}G;kdPIx8BzY zP_A|0&>WcA{~`Vf87^4LKha=gZ?EBb;5=ZdT84S+%5r=n;OR1xpgc*e4wo0VbyENG ziYIjS`W?O9<^H^S`A&Cwu*DUHY-DYxDBn*rYdWgb0W7Y|#R+sLvxS6GKr2@Un=>?U z*6|&DJD#?*whAFhPo2Z{pR8M_D@*i}n>B5j6O^vo1le z;GY^?OJf;WQC#=M1GH)8J7vjv@p^Sx79JTV+d3Nb1J5n@cZq^&@M@*Ul6a3R*hxit zVcfILp(l_@Y(E` zP_z(i=$-+T5^i-B6_r$@s(sYz&QedZ>{4k(S1+Iyjsx4s({L0$$185E2MQ7>MEnN2lLj1%LkH*Y3# z^dT@Fcq0SwW%%!AUCN0htDhfNQ&qrhlUXk&=t=@&DO|X4VI2cQsg(kf4sFr1Z|3vo za|ph^`Zz6j24GaA!wRw&KJmg2sI=fxxRKz?dAuu-}`2+;Vir~C#Eu`Ua2I`(j+93mkw6c z)Lg6%+@0Lz1C)xQYsL5Y&PNixHxCb@g?~A+fr)G7zXpJk(Etu%;)GuDr%#z8TYj%a zQ`L~g6-oI_Irf$#;V4gwRX0u7uYTGZAom04p!^3&@?K@S? zejOqTz6{7h%B>D6z7IfVuqj0rx&Fmwz9*PaCrnJD!S_CAB$5ILMS(1U`j*$qs!6Ah`xH5^o6pji1)WG7nuxt41ikrLxWty+;v!SyItb%2GWPJkO! z&y4kOw({5y=g*lpJp79#7P3~lb2z%h2KEylF7fSXc9eUtPHVe%z#5R&PrpDrei%Kx z!s1oiSSR{J6A-*INOBh8VuO7m=|Y@lno5Fh9^=lPz5Tav`-Zf^u{9;u@@&yBm27Uaif# z%Jnher97Gc5KTF#=|`tP7{n}p-B*vjM7()@%rIIz%PRgE1LefyGbBz>-hlha$jFdM z2aM^d7$nixe~zMnu+3YXrDxmp(LiCtszPOBRKn$GVf2OsQ*dMw@aZ~qZ6~z>D|>r; z%d3FrJ4kr$dbJll{5Cx<1FJb9@Vk9!QKP3aSOZ9c5ONsp+@K}!*I$1b%}MA4JQ4Cp%zh|9*LgyXlZ#8920CCf{rd_l1f)ZnsW05z+|b!J6n?fbe|_{i zc$L2L%KKNa=)BDF$Hz;T3wq{v71D#DEP;x}}Qc^7I=f0ruLsk|beQ)pX_bo?*DpN)q5C*eu!2(Ler2aDr;wfPCJOgEC{X>+h1*`# znRuZQhs$}{41O0v8eVp*J+Rh&5 zaC8OC|Gh1EniWwwbI;G9JlEU(MI|-;{R6(IgZPs?UO=od&@yX-I7yOUk z5VUBM5JG_mX?w-t;OLkm!b3^I_U6%}zne48adC0cOW288G=*zPmue%G*fom(`gdP$0_vLt zeHPI}_HMEef>M62si~6(N;4FF!wC>bi{^$v}!wcuo7+qLX813@`xW#+Re? z$ObTlGoW0r3JMDL?cbl0+YMcX)bYuVn4g~?eJSbf?eX3>q_QD-8T5=B`2p`l>Ja4(|T@E(aSW(?c2k_S)x#vd3CZ=htO9g zr&_GVmXXTKFp@eBG$xr;y?x;1?A$dxoN)ZccO!uJrbT9QmvG*NN8IsGMjCj1D6aA_ zjE{gD#msbA`v?q%f6pCV943|)`3q;z&yI2Ig2HmFy1M$Al=JL0ktK+=yNXMSikd1) zhujhp5=L;8*Zi}bOfd2 zsLp;)&Z1lWQIS>>8nh&%s<+ztTPgqggjUQK{7uQc>qf*Z;}8SevF`H^?%#))VM+@F z+@%LE%}4TT#K(dc(V^GZJXp_E3-Srpb)aDe5fVl+Y+5HC8%oPN)hLzpj?&Unkb*#$ z#Ti4YN|sfZpjGENT$B6wadq_53n1!nfH=dp6({>G%xZMqJ`S!8ql^hgIMHBj7M z9cj_o*B1rw+v}+$bpg_Zdc1a&ukTK>qVITGWH*HNk_rm6jFiU*QYxcQ-dlsdQxByt zlvCcD8>t9ht_}^RF4w_2vVe^|3fJ|!Nb7)+hHlWT?t54}^GMAI_;9EpQ5m#L{jEX9 zT_C9Jha92sZHn=z$+>M%FU`gzCTcI9wX(8`5OACv5I{HDNIeS&>RD!Hrh-08-dzpa z&#tcP1Fbp2H7q{-dKHNu9iW$_>lZ9c`VY<|CLY-@BqUTbGdDGy@w^Wzn!Ce__nWX3 zGJQzi_JY`KSP@VKWO$g$EO7Pyn$2th#?K-nBgw}GhiMYhL$ye?rK{J$(Wx29%oHIj zAdL|&YSB}svYMJ>HJJtTUHlM8!#Q{a1TMf3sjQ)YNwB5YgMg{O4oX1Rup4SIE+YdM z;t`d0gEN`qJbVPy{MST=A2!VQ#Y7;)Vy7|N8nazr%cd3fp;AUvMBj%i>L$&cH2({QlC+W9?sm z^^%pG0~n_lIGgtBr;v8$&ArWI=<#s`o@fCSeUlvMjIz_Rut%Bs-DDU{rQN-IS2gKs z5le{_+#9=cpsO-7kHMC#n#oKwebI`J?(PUMJ9(PROcxW(s7Bj`c@kVabhb?yZPfQ@ zVjFJGP@>gBr)ajma^(ssvq1<7+_n{T-FI2?r4XZ^k8EHSwK_wqMSIdN(Lf1m5WvQj zTa`Vq>1!Ap8F`tIU=crts_=DEWZ}Tg3M;tGonjHt&(ce{6a!w^^fYifuYU}U1hq&3 z(nIv+l!%9$+2fIo^j}3!D;PH7(G>nXnggi+^)yY+)+U!d!oU_pmOBsb>0V;dmdis0 z-_K=bI9Aa!uss*u2tQMcel=*Rpzv&PE zG!sy#qZ(Mb2k8Gabqs-gLJR|Y2_n42?kR|u>w>(;Li?S!^4&AyCW zPOxQVW$_$2qFl{BSK8f)PP{tb08TY06KWiC;D8`R9;hyg=;!rsPP^46UO7#zhDbiKFxB4d1*0t_41EU=HTn}G z>r0M6FNG2pot|q;^oMP}DntISNY~6o^@DoxSSVX=}-U3E!a+g1Uz7A@X z`VTsM_|nN~;G+u5x%>S2)2Cj(d`SyK-!Tv~PrAfGMW$EUxs!TXfJjxm8JXPRm&uYY zsIR0OQyu94DV!-6&7&4ZS?nf)RSbkrpm}UzejdTyR0%j5!m%tR;X&IRhwGfDTDhpC zsVX%$kfNXupuT1!a~KZddyqW8##ppjQ!=yU?NpAw_jgv2C1mid1!33wZ7(UOU? zNCX)xAOa9`#c)?#J|CUJj08EXkTYgW0QW$BEgzqMzFW99-`TM>-&u<$Xx**QTwaUj zd1bdS2o0YGBS>x^(l~J;7o^$F5aJ0p!!lBFbpjoqMI|;9mZrDnWRTW5*>UL!1@&Oi z3Fs)MP&G-(c~D~WW)CMl>(S2A^aWECl9>0z`xAN4Dc5b@44FHoHb#RV*2F1v5?UCt z>Dr|QKl4wIwxpLpQ)xg&P9>IHNM!^BQU%D(`>;;5eVao`{O(j#DkX%DI@GmsFa=YT zVa*)7I8qTr9qogIM+?Ke1Zh~OkFD9T^WQR<+#EuL(YF)8tMTb(O>YlrrS}Hfw_N~3 z6*R5qquQ$rv^x&x&CJ&=_ekHnz^6#%b){h1&qG4?oL2FchVg9zoutWS5v=u^NCE7R zhaCGM6UWmbeb@AYa;7(UUYnksWyX)nErYh~Kier%f;zad@W=)wB|_;mEeTC$Lr<`z zWBqZI)B+)ZzLyT`vc1rZ~Ks(b`CP-w7Csj9@&0 zYO5G56^FVN1s{ZjG^E4}(%1*0O6u;w0%jdCXwxBdQa}QAsYdCXXd$dCNq-Ie)(0pG zvQaeJ3jK@M!CjLBRC5Z0P1V9&e( zhbEmXW>Kp!RBuwSLory!5|hL23D7bW;D^7ixKaD=B_x|vry0UZa<(^=6y#c3TFBW5 z)Ftrhw(3$(uC&_|{d|=$NxAz*Ggj<`#<{d~ai%!FVg=5VlN zf#Q)sBIjs!1C4JA7AF!&J;zS;f5ZDHqz2mZw7@|CE9;;RTN5mEz*UWG!X~w!o2syv z%6I?MgOo$hZv2nb2q))cdWU&iu5t5F2uzN2|6~*jiu;M>-S0dN(T;S9O}B+L$!tZtQw)P z>%qf^ynv_B)5!S;*mT3cATd+8&Hs~eBp!u{8iyx{vF!LdH8nmqRs$j2rmvcFqPMDW zH3QbC+;W+eURcVHJPV~AUE&Ab#=@?r?N-OfBqQh{SkI4t}QaM zvZmExR9YCUcoT4(!;1H%#UVa|uN@}gyc!Z;CjgU4|EaXD3>*gzm_YEMg`sXTMSfVy zw(5E^NUwoI$P|eO;bg!KJ@BlwrtuTmrzp-c}=%z`!!xaTZUe7EKX?k@~ zs7NLhovZr#>m_8fp-%3YreB1}Pdb@Ko3JfMFa6iHFz1LNzWPvFkHG}M@YK1A_aEEpMB8`RL=rIg3Ho z*S%i+8cL=!*-F`JeQ7Oe=WI}vKYw9H4FkOAo`arNmMjB$aoR>QWozyMei9ESHrR67b~hcaoI zfpG}_A!ss+Kn%t1tTBP&m#Z{Y!y+OudZX44qmpz+k6!=s4n&G{%AjEDux`e5UOwLiUpVFJ1bz{P@P^pZW-TOK9=`Fl-tuIjEAv^Z;7r}S7}qt2 zu37R+Eww_fRc}tef%eElrIEzn7?KT2zfYUf*m+iwn`Hg4y{-WDi({Du`?}Vd)L~<5 zQw)`$%P0cvkn59L7{3@E5g|uAb^3HyS64Xn&}(7@E~S}b@Z6nX6+h6Ycqjc@=~f}L zMrD$(KYRAorsDsd_WfU3U!(fkvobQqm=z=wmh^Ejj;RH-7qE$4Dxkx*ng|rJJcahB z20(#Yb&wzk*ivUNMkthyHiU3bcO}=_KeTC&skR;q)9^W`v>ui5kfiZpkX5-x?gnN0sVJM>p)Rp%2wW zdT{gsZ=tPg6u2xLeTKmeJwaGc<$>ZFN)jXYA#9pyU7j|Kii%ZiK(2?lEQvyJxZ6E1=(qk=QeHGozTKs4}VM?2?* zV^XK`n8KH4@(xlN8uq0*&ZcDB_Qf(!IX12CV=)|V%Oi&Y;5dX~uH$%Na1su}6g<%c z#-3uJSa`X=@IgMluMdo|fey=!Rrx-8_{F_@_oiEAIE;1s5t5GS_3=6}4BHNHW5y3W zUisddjhH37(hvaLk?fU&kThw_C5FpTpa-AJzPQpJ z6P?Hy>v8#tYK(&2=rSiqX~^*x)SBuVCFw)L8RAP}Iv{pz(1R6Zk~oNs%z~fQhw9&5 zIE~v?1M{PUT5SYQJzhdWIuzSe4(GF|=e*Zce#vfGNVy>!Hg&v9A|eqrnNH3#05p?L z7LRL;CqKI3G=}qNkVI_29X9l&nzw2~Urt=O1!q&|Rhv{&K~VML<)2WJ?K+q=&|7`!PQY{35bj9;N{Tud_xf_v33mSMOiwT;m7K_w zn(f_BKve$jzL`zp5+?94DK+>CY8yGk1Ki>V5r%cdDn-a;{+5G-gE2M}MbB$+=FY0M z{h0WvU$t2x#FI-2{$PGJy6yO?{tCZuKRK+@v z#Xb6JUIB7yOs|g{{r!1b>BIjf8W?h)s#)mbC#rz*FcoTnc_x#^`57pGsxG=$gJQKZ z4&##X5Xir0Sx3S_jV7rrL}L#^dNK2cn)&T3hp5{QD106jf*Gv>&Q=fD2iNCtPu|~D zEe{RlPn-qXB{vrLs;E>rvPR0E^VZc?mpNHy#s59DL(-bnQ%~5uMVUN4U*C7Tju{vM z;ll)0$DqItzDprM$RdN^-K`Eey=js6DYb10XD>)}te{73BKk8tO1`A1R&30DX?jKb z$jriQE=Eaj!wt6zaQtw0H7yKcn7A0)>*v*ftO;O9ljaVf14HqOvNCxrJ8@3yJA%VM zs>N$@`nVaD94PaaG0FzNC5?adni{~~0Nvkf)~x9V(=465b>f6;+pUg`&j}DXkTs0X zhTXk)kCUg6o_X`fv7L_#Ux;%;erJR&0{?#g7(1&y>!woadUEp6(R( zJ}pA0k3lKaA~5T8k1SvSzM@BuQYeY5mM69uF9bVJzUJV8YYFx5tL4Dy&63xqa=~Z5 zj?O?<`_7hum@E+m#3tu6sP^VIm|rV9o3xrF-Iw{iSxO`(8}-vmFlLk@X%0nm(DKqH zUqotTuaWqa)Xg{J+do$@4-@bUjWA(K3j_b1jkt;t;Zs-6TKUb-YciE2R6;i!hu32Y z(mgscQ3s)d!@^>Cr6EGsp^!u-uKWHEv85^A0lDvYMX6O!Vgp$OBTfCTiuA$%}7Qn0kYV)8Pn{iK(G zSuATmPC-3Zlk0Q|VoAFsti6*;18F$Qvis<@MVINm{h$XT|S0{3ypsMJ>f?Xm!uA!0@yjj;GZYbzXUnbh*ufax}>#$rfw>Lj=T5 zPAXDc)4c-=i~y$*<-E85mUj$a!jmlG(uJwvd$#{p6b$%{4Sic2O%D}Rl+V20Kse3( ze3YOBW+OHIV-;AB9A*fzk%2x_NRWe) z%(#QtaiH*~B7+~(b5m;N!!{m!>;4<^4pfWHFLb)%kA)MaE~=`k?j7;Ed73*d0}j6% z^Nem3nW~#`sT)@R-BD4%aK(Jx>;x6Vvu>MM$3L#;e}_6biyjhWPbmKhQ@llh zabVifAufMb*;fYOw_Y4YB}7Sc+CJfZ`#w&JWJumkv0j+9%_$DIV1MaJD)CSU*O*=& z`TbiN%EZGByWT>A?L$4n*}VW%;--Gjv<%H(T6D~@5^bh?P%CXpT~=GT2B%u3)_!)# z(Qk~yJe(D#hp}ypyLbC{VVI$D1N#Qw*ZyviLxle0XhP5;c+l6%Ubt$NXZ@EN;i>Jt z73wb%JTRLIk2(#y7O;Ra`XNCAOhZ|mhuyNw$^Dibg{D?R9I(aJBYZoG z*Khb5FfvC~a1S`vBk`5JZT?pGjJ#FF#6|`NONZ8{s%mO^DmNfZ@aJ_y#wxa?Kd+09 zj#kyxjYrE)pA&mp^cG=8D0z8#CFp2qj7@n;DS3X8@~P&cCcUiw;Zi*(prRfrf*|qRzct1Zf%S!ts$IJ0nLQBrbJD zMa7(kh0!wpFJHe7jE_NQdDcN5JXDa%=TD3Vp}#~YB=~T|LEu&=?Lpp{&X#pvBn|HVGp{f%xbs{cx zuZvr+o4pd8?+${25B6d%yl5$(y; zy3F_Fmh|ND|YqH}}6 zfSseiX^@ojvMfX(nu{C6m;)yIYGh&3d2x_0lK^-K9=~lm2&o&0)SIIxwi#V0HOl}a zzO(>+7J$t<^HvPNUpRfb@L+=vFdHCO+RSZz{ZI&8&@1*+t8rymXchs%0{Rav13W!z z%r%k8ZrX$jCwcQbv@S)~Na8 z{AjeT&+*nqT3Q;vlkUZfp5!|LPoAvvX&^_F@EWF*d2FEt=7;2f#1B{YbarwhK2cCj zjE$@Cwi0lkQ9uDOJ6w{(R56^YiHQlwhnUZlzo>P@pRlYtZ z3xrM#wuK%Wu*-p1`z!X?VtmB>khFQ;5`9{$G{?lq%H{r|%zim+|c|oEK_mG-BM*=XsToM`)aiC*1 zF)>k5veG0iIyYAv{@?c$Ll54A2W>IIFoFGn_OFU5FbqHFeZTYC-#_NrvklNXqLPzU zHg4QVD&g?>Q%&l4i;9coX#M^Doi{}UjlS*inIgzH#!$}il9s}a_Iw=-%49o?Mc^Gz zLEC=SLl~_FE4QAR#SmO;o}&g<2|Gf=);6u5PAA{HB#8ha`ktwtKp9Mxfd&_RdM&@J za20}fJ1grUsu*aE(zBgLtsk`1)WUJVw=>_mo3?(SpKrl`UA!0y8@-Qw>!Q_M-f!(_Sia{~Nl5j;-VUy^p~hepPV-9pEY_mdqVK3*Nw53&tjDcj>;-aR=}-1Zh*k5@-uaR9d~V2U}( z?V#1*d2RNP?P9l9OtauG=zqDYn0$#)3MOASASpaln&5H#;l+rKi;K(c>ECZiBS7Zq zj$OO=Iav3)3Ckk%t7~e!f`W$nRK9Jh#~HT&>ggk=Uw>fmZtj^wHrzY-rjOf zZr%D8)_7e*Lm9@OFuD5e(U$!Z+5-4}!gc7(dl(Ksia>wJ*IP*=pIIn+aC{fut|0AB z6iPo-@U^^{rKJ3zJ|oAfep^8m@slRm)cFO2ronM~L?=onxq3`&4E zM-;KN$QBROLiw#|mb~VDPhu%Ex`~Uo2`CIfavP)C6_mHvUyR6WY-ye`6SHAr9|NT$mzkiAU))h$o_y2qG k|E)X!xiRnmZ3ic$S3@E{HQG$XA6_8-Wi+}_HMS_ZgfPmyoGv+}Bxg-M!5(NY# z=U^Zxl9OZ=5Xl)NzjbiFm+IB4@5lG59yPK&faUUwf64rp83ta^WPYn(UU9P zBIGL%&B*gJ7@nmU{>=O%xZq}i){(!0cAlbEE1vsj;fcRa>H5D^H^00qWw%#kY?blJczus6+dVuSBum~8ar~Gn?#p7j7ue3Kkr%(8aMO1n+##QL3sLrujxskM0?rPzC2Zu-0q83lSs=np8 zmxJz2&lNqS_gYDrW#pFIe7`ixT-s9iy+fi+uV$6)6{#ZVN9Aa;Wl$8Ad(KbP(xRiBCq2I=TC@INeTpr(((_7> z?-%WZ@|>T|WZy*@*6qoP;hMPiz(Js@w5Z~qMTd{c+BLRX>mHo&8NFR=8GXz=FT$Yf zUTa5J->Y8~^>tRUe?CRA>AZaTvMyHVo+hm$pcef)$*5jbWVQ3n!TKLpYrWI;S(lAF zYQ|f5m_AOmo?+%ZxyQS{muy-)tdM<}a}`C!{rJ&|=c8`;y*zf0fA{Xv=-4&eWeco~ zw5cENH@cq5NBJ3z{W_hVU1Xm6{KtamM^bNF{N9E->;H<=?jT79if9!XOER-b1Fv&=O&fJ*l7y)NS>_f>-)jF zPEk+TPw&U}NC_KOSAOymupH@BF>1;<-&GS+^X>gT%hB%hQQFyBr+oyA2I((R7m_3J zqsxN_0y!TjGs9+Sp|sZxavm1#p@GF5@@l;@<$e$JhKJH;OWjX+XnHQEsG-2G3lVg3 zQc}*M*1fNL8`C4t$Lp#mU4MGOxZz2Q>AjVl<(1*e%QkOu&bTjXe$Hpi*vj%D$2kkL zs{FM6_iE8A=Tpw%3M3Nf&8PS26(`ttch|;O?CPTe`gy0?q8W{v?FSvoS{tHPEvKaR zo+VPZteNu&Kd1`F*(K1 zXLvI0DZgf-cVrNo!AY6G$ZZt0bO|{S>Ply^pV;2z+tl)p)6&vnd@EeyKAaBovgt^O z)M3*fSielSN7KZ_glGGYY@3WYqi|NCm$}qdB%6fyHL|avpFH`tadZ1?a4JWs3-1V- z_n4bU#`DI62p&jKNJ!}3=c}>jIQAk^bLXj%Rc=-`Ha52V_3d7wRgZdl-a*4^S(S*h zre^$X^jiE-CJ>YHy>r6})};+Dj~=ODnN!o#ZN0tG1qG)bZ4~~**FH2bP*!n9GRl=x z%-|!7XX3|mlR@$J2SQn|T-FMRZq_Vo@9F93{F9>A2a%(Z^3HSRjI`{kW-7TB3P0R* zFnaUWm-qkt^G}85EJsbwpi}?;`)}D|Zij#pT5?uny`aWp#`wfUg#B3WMp27b^XJdE zXvte~&o|O`=!f0ce->8;o>(S6`bCFdIrJeToawQ>E3UVcl+0^*rHB+ z?5TC{ zhi+V)7i`9X00+9!ybQ*NDn)AQW8Bq3j=g6H;*WOMa^#QnHEXZfbl|gT!>v^kuMjJ{ zD;$L~hgl3hVd1K?+*b1_g$)A-`2YjAt|W0?RoyQ8B;eOCn;oI^6f`)*tUhlUs*KUr z2G|u^$#zvo37h|rz2|%8?>0f~Q%-Xz*{&PY6P9%SimGnYnJL?<2$j>3s!?W_`KjC^ z1_lwwe#ELr)y3<%-CfDaZ*4thF)8D{GrTNFy6Yad(_?>s|6|1fbBdL{9RBv$HqE-v zxL!~*EkVXdFv_g$Q#fK{aAd@?Km;FanJaFGq&mt&s?sdG4s$+du>w~~{K|RzFU7Y0 z{oNIXracY52}bp*ZW0r(Zv8!va;9${|9wh2c@IAh#WvHknF~B9UU^cZOj}MaT(sy% z$FH0mDaY|PpSW{7SIRE}ip`&U$XmDX-Zel#+KL|7y7k>#ROcNdT{ShRGr|UyybJ&M z;|teVf4{=1Q}2)t353>RX@jhUR|<@zd_|I#Zq_6p&zu|F7<>{FwQP=5MXHqy z{PNLuI$sfXro=+~=+T>bk2ZxhJ59=A{Y5&pfX(h4=|B>aNq|5NuXI*rFmnxXoyy<6 z{1~W3srXn!5Q!f=hQgIA!A{d7YI1&}DhTh2!M4J9zm|HF?5g383iF-D>vx_Dz%9l0 zN>J2^b-z!lrzumcCLa|me+iSyF_rlBbwTFzX#M%#GxVubrOIc-Lrk)#4;1d{%N%EVhqR{lc(!8F?;-KO~qD20c=_w<}r?@518&(_-v>g$Hn-aF~oNypC4 zs>q2h?b!${#jv%&9ii*Z=$IJkl97`usxP<*;{F6-zB>*Os@)UP<{BdDoV8+X-QTpH(Y<_N-&yW;mMs$MA`10ohy?Roq5 zt-Q^gYT-E0SP*AH3Bqf#%MEA%@Gda8^E1_tD1=2PP} zU^)&ZvARVY#YZZYm#$b*WP06)7S!Bt@w3#ye+?GsJh#9lgjPfj0Fca;{-z4DrMYa6 z8`UQj)o|z)`?@10y@j-++h5oV7AAh0of*qE#EJ&{`wMEuK`sS<*TBsT21Bid+qQM} z4xW!q;mTqAuYcKH1wcfVQ3b~CzgD`LQ^f284{b}e`d1lL%}h@cZeUa!cLL!%{-UC& zNDj>S?8S>0U$plR4zd`w_V$JVHc_+I`%Ml*aw9*>j=71CKFNE?9&~H*DuZwD?hFnL ze6-djii7y zck|}W^`F8d`T@0r_c?Z7l*%ezK~Z~u7e59;L|mc@ z`z|{sIrFQ9loUMt*??5z<}AM!y0K%$`^St&?E6ltMQiZgKSvFIn;vVfK{bryT*J;D z&LwWgD{`H&Y78unVje$oRz#$^T|hf4gB0^S%huOfdd(EAp4re(~bPc~{%c@UY>5d~UIBU))T*n$SI7>d~fysx5hs zG&zs4EWYOaqwz@6ra!=gMcud!zR?A?Yvra58nkF7$ImxIt2XXGHP%dLgOi2Q03KBz zA#LyM?CiQk!!S^?NW+@w*KI2(=QY2z+Pvw>u^M`2h}&!Dd8MYNrdroWZf+%24XK=~ z0xtTA+aFMCDe)6)?_W*`&D8i1Pow6lFGY`p9?Yi{6z0;w#aZ4@v;!y0kHUHQaNO(; zE#!>3u(g5$t>6?m@5YFMm@))`9wE(F(Rv;MW%A3&VZ!c5dW>+u2sK2Z%`2` zm!xy^)-94h^JV_nEM}51a2KaLC|>e-%dyHNqYH}}xXqn8ppx1{*n?4XmL_VtdrXW; znj>~?qlj6s)6BRY>T(M27U%tlwz7O~n%?;!mlb2XX!(W!q}GQc;UMpq-p=Wr+_PZ% zBfaT;22;NV>e8)aqBT+j0nw3IE4z#~6+MJ?@R4dfAopxPL~9k8wV11}tCVx1QG^7tC3(Dn)dW^G;teYeBUZdcpkp!!2%-Ke~K-dwUJQuV1T1k}Ziz z1)(vYivUV$i)!2zW|(ViGp1TDO23itJa=>6JbF8Tg z08It#o|B1`^U>GG?yX$9bm=Ek-`vaY>FMcMtpYW-(j!d5ez0>-!otFIOJ3|cnEZNn zQaAS8l?`_ZvY`yDzbFb8YcRJ0N})h}s{g%unnk#bC$D>l)BD|XEdJf?B?~=P-DVdh zc>wkWioA<}`~(#B@Y}`QSM0q|M|htd*5D*}qb~XbxjI2xEG$u-6z=yA2zr#c{zH4t zQJ$|mrQNuyaO<^PT!Ns<(``buVvJVi*;KQuYSM%gQ8`;kK%Q{Dv;h|)dCp*B`v?s` zckT)PI9z8K6An=?C=WV=Bb^}|>Ehd$H7S4T(xr%Vv4Mmy10z1|Uf$E3t?jX04vLvp zCd3qsGF6nHe2f}@he&YV$|E9j9xVPbL+-`l^H`e~uz5Zr(zEnQ}db&F58G$#G~i z^L%t{R|nk@j!Zbs0$!+H#QEdv#v+0+YjG5nfK&hCe=x?!$FGWnYNVR6f?-7HiEM`of}l_e zo$RcMiCM6C<+VY&_2V-Ub6tt@`L2L|{(}dz0v6_&+GroS)Y{Pzjzy)5E~3~rA{4ME zd-f=@TEDrEXqy5TS-nkZ(2?R>HfA8sua+;oCvO;B_2Hw8?M|~D3m?55y6$}n$&MS2X zE$>_U@0uM6*K79@hXeM4afOf~8G7nSZ_`dM_a zxe^Qqly2K2E^&2`EKf#bis`X^x}Qt`^Bp^3A9(?LAFP2G$e0rYY)9^`;;t6!%V@#V zxH!|Z^klOrJ(EGC?MIItVHaGsY~Cz|w5x%mV~K|(C3>vU+J9LEO7hh2Yh1SOZ773c zfZ~wk_SaRiM43O#$eFrPZbr)e0+RMmo2M+6VuswpOW1k(WPYNU$ z-`>4(o44ZD(it%u?!H8YHJF(i-@E)6yr-%+m)@U6QMgAwKl=NKu9Rne=UBVet0(2> z&!0E%F9`Uvpl?zJo@SmKcMMtWQcY-jx{nqL(4zw0d@P)l0Yvu*8c&XNg=INTiVpEnT#!O$l;(VrrrSYbL5ZrHlSfU(+&|EeHDaBZ$`U3z#@d`(t)83V^SE7I<>u>N= zx_OgJbN*gIxo`m$Pr$Ep4rCx?fYlXnoY*#PiXAvxmjSH91!~FB!9 zx)4zCl87ei@xr+a7!re?d^t1Y4Sg@nqsKu35-+`9G}2wG3<&muGD<_@3T00z0SZ{b zk01YKYip~I9zcgHq?r#`ZwTU=$y)xtH1Na&Qb5TWY~8xG!kkOQ?0C@0M@ry#tzBJ_ zOV{$hLQJS<*u;MS{ynbf0&)k}>ZsN8FS61&e*AVuMh4y5))vA|Pwi>U`ts!*Og9;5 zOB7}}uK<6DJY^V(D&XT)(V7=v31_V2mhkPdWpqF<5)Tb+7(Q?mJVGR5;Mv}*GTzxR z4Y9th1-l;x;m3uHy?e{AeR=b83tt5{Drg>L>_Y(ZM%KgGX*iH_)(*+Wjmw#NDW)wC zD=W_i!JX-Fm854J(gybI*^{IbH}S2j%kX+_98ckA^qBTD*wHTgG@1%dQhT5sWw4@0 z%zpH>Q8U2eA-3@9^A0!;`~P0EW}oji2o{@(j<9%fRaWf9w>LSomQZgB74>Gc|DZJ9 zzOR}`iZB(Q<~W%I!DR`Hn5pz&-L7Fbdg_=Lze+iL!;vy+?v8hNmKl@=`~yh$YH=X+ z83rF8b8u`-4fe{}z~f8mXCNvQO`5d`vtfkeX^8~GHP>=-MiG48xl=YaHny`NH9qNj zZ6Fk?$hW6q2hHgpvX8hWwOA;q>j}jGyCj`Tg0`saBpqB_T*{%HL8!0iuY{I{DdEll zH`XMgYvcZF0k|YyI97SWOC2#7$0rX8}BAAKk&j z!w$A7OI!08sH*j&^-%Np3aqKODJY+z?VAo7`x?DK5vn^SBlBrDw37H;Xr?V6c@+b1 zuU@mpK5w|U zQLH|Ly11C+f9sn?P)O9{#d>tHZ&{5ty^FbV&*j^AcHc`6aUbG&0l(^mwTFHbCBjs! z0xtlRC6*_ihE4 z?$^90iQuiiV8Ubt1_lxi#grN25Y$L{+%}MI-KQ!mOFtCU&gu^MfZaH;m>7@P6m7>5 zF9sh--CF*$1ypKr228iKghG_A0Q1@~Ft? zPa*Xik}^%2C74Q}Dn@R1;N3&F!JZ8@KS~@5MKDzqZ$WnY?n@M_Q!Fg!dCM=vciW** ze19sK`gnVfgM@?xHm1ll>qpV^`lJfu`RzMV#Lu|uz|p@{FJb!qc5r&Op#JGoj2$}+ zzr4A$6g@w9ANw7C-GD`=x?V`jLLNO#=dCx1*GUzS(ll4_1{a773=V!Wm8D_b#y8S1 z1({0lZ@W)Dagxx}e%sa8=il-KUj3J(puoWE^@IXt&rX|&4}IR3#Is3ID}yxG!u3jC z5c?lb^Rlhbr*QZ3{CnWuyG00tr8fICG|c?c8%7+Marh$=`^-Z%6DQlv_Cq2x#2V>Y zU%g>PmmA;p_IUE-2}eHGP@gobF)E{kp3TU3yT8DeEk__`5L3}dj~z2=A$Nr|;oHC8 zlZEAc&7R{Ycyo6-dmzA#S5QzM{cI(GE)SD*(A^|wuBmOu7JmP4 z3vZ!oc$Q@WLBtXB-SRl!c>AWvp4#{w^|7FEXt=R@qkBL|!*}Li)ysF~w7PoX&BY_G zI@QsdhV}C4sda=3!^!DDL#kkS!vi`u5NB(MG)pZ8J5td2y(Zh;H@-^MkD|>I$Kivv z(!nO1ZO!dnKrf?7FEy=?R^zvcK3ctcH7nSCo3!p1lh|_%=HyskiJ5C_>lHcQLuJv| zVPKa5SmGPV@e-6PZ+!kCWNijx+c1S@|QSL1N1N>ltNsH_mXL62|g~H@5Y@RwaH;( zSRa10Drwf339eeTiUcB2%LVS+V5~8$t*vqVamsjl5&V6>@E^1>V{;IGNqGi}dPM1gO_f(yct zGg%-%Y7B4oL)N{%0EBH!LLFv6>(gLCeQA4=dwGeK<)1K1P;+sJgBKx{A$k?jq=mc7 z>iM$k0-f|FX_K%)Yd2t;;yw9a;d`Z(nFe2xZQZ(1_{5At(`1w8q+QmfASv~7wIm>< z1AbpJ0MB999h=WUj>(l{=_Amnb9I(*<2P@13t#`DfF2WI$)0#5hyMPZH_~u*lB2@J zXms&V+?AoF&~S!*PFDpp^Cs;l z#>e$PKiNb4XLL!v-Mo$8=I#7HxjO8#KIkua@NC~sMl2wR28V_`U>!zo6Or2|Bjd7l z+cq91YVBi;cfk2_)^t6;)BB>@J**P4LZS6HAQhkw?!5IL&qm6l=>7(elKboafAsHa z`aiQ-su;rwWN3!T+IZmlD@?2*7G}D0{#ih5Yz7~Laa=Ra!qjx@|AF<}A46Mmidmgv zL5FGjE}HFu-IP=l22mp@4~g%xW^N7%yGl_WzfJc4`;V7b(4^u9P#i=bDjPSa_ao_N;YBBYsir9KO-$Sf`Yy;ncIf*Wls z0mNYwntHHO%3bGwm~xc!ezc8L(fwPyetmldK zOHrXv_G^^sRMABWY@G4ucD{{XIgfJv01<~W>Vf8Xx&nIc30Di(sY&zhcLD$&Rl(R9 zz(<1_U+kso5NH2VV83QZNsQZ>Mpd)10c)l! zMig_onr&(8=QT*pFR%k~8(t|+H=zmy(7N}eiMOetRHtYttJ=^>JU#f|?()UblF9+WNJk(aBF}~^p+lO9iXH}4pq3At;LGKIi5|=OLr}wGrJu*;?;#Ow z!AUC^+$L&aW-H(C-mm+4gIfL@|4Y1`8YzLanBX>H6{o5${(vK=&o?|MrjtoL;pjRr zV#i_-d!igXIl-_-kjxZ_-uUVavhn>B{RD@0T7x|0#rY`Hn+{x8fM`%jx_+K$L$IO= z3_y9YSX-GuAa^)o@OPmNU^wfe_l@fGBshIx-Tzh5zTboS$g)?8L1aLJjEtcL+gTQL z4@SxBl$4a~L)DRLXSB4mFl0sR#dEF)Y~TTj#03GCO%{Sshng)%<| z+3*xcN8*X{idojPEMCVHEg8P8W8Y=u<*VtAim*hpHW?xT&D)DDEg9(=}TkN z@!Wd}))Nov#s+we?4zC^Sed0ZJ8l{k*&=fL(uU42u|ZISA%IQo?CH_xkgZ-%p1gXn zUI-(?$3d{t(8lrf_3iFV!48X^Xy0~~5b91iW`wbzR6IpT?m2w`17mVaG35zX<>~1e z3>J3b+oT?u@i=h(O903w5irCg&zc%MT|Xm9XNqEfNQWK&|FN-aO3EQJr%6aBe765a zR{1JE*Iper(ZBQf(gyYy*8UQX4CX=O1_kt;;4S$We?~($v^HMPkcMS$2Npow*Ltrz zv^PlOKMNL<@j>=c@Kb5~(eAS6CRyPNm#w>28gN8JSCCh___W&@uig)O4eR}RGqZbp zRWkh_c^;N?YEA%W?{t^uGPQiDA(DOd&ZyHcYgjwmnul-3?zYt#dwFX?KNSzBn3TFCju}CPuvq@qOVFz71oC?qym0@n{&61cB6EHL?wBp zV(4W&f85d*m=yN}G9H!lsdfkasM_uokW;S2LDs$m359|D^weWvw;T70!nBq<*SZ$nFI!v${5VHh>Dt;JsXVIlfDB5Gwe~}Yol2R{}<-dCbzumW2$a?mA z*XoX-6}4`B*AALARg!I`vCx8=8Z~lnSXby_XgQ5vC8+=~?{GzMJhJNka%pm)!Mr4u zH`6h2)?8*%?_qI5!}P5a`QCEMt^XJ;^e*H|b#zQJN`F2}Jfh(RY#=dn{CXHu3hO_6 z07wqZ<+#FqqCIP3w0#(4R^ZlRdR04~lwRxlg}b$`dvr*O`UCKtoH0ON{4CzGU9^UUZ$&1@<gI|oo3!&A zC7nR+G7=!>(TuDc{e_w~0*c!4&tk69kF>{*5y%?CjY$|9=@797op723=>~?ypPD{v znrfKsG)=^5qkUf{D;Oi1*ML3pjuNBi20Sb}LLGJVXaVubH?3;rsZYC2f0k}R2dQ{; zvaGpT`$DpD6%KWz|NW}M`uYnWKYnC)`9&fihMtb>X{Xyu{A=KVF5Pc$?0arpC`8>n z?dWu``QfDN&-jz=O2=PzKlZ8F0Z$F&yvlK`(Wfm#pZo9gQL60{C_0bl1~%O9WF z9j8ZXSi!5eoeUPRuCTGQBPI}3?#a6XTjQU_V@S3x!#4i#;qqDK-P^aH1npumgpKKj zbC{@+Rl6NJUZ_122sKPbU2z1Z4XNgs(0i3}I9CIbSuV}&pd85*Y$G~(C$Nr<5)LUZ zY`!n4S4q{slgL04Y^i9kj8G9Ebd-3?#1|Q3FpMO$w7&UFnQXQj|(x%VzI-+VUiWjB{b;F9t1v%-NYqV(VmNW_kgU@Z|a*?yr^?OAgXl^;~F- z6=KF=-O+B+{bDFD{MN+uQ0(ANcgF=Lt>-qhpV89xhkbuaZ10xDS! zwj`L)qq<@Db`vB6boBnhX{5VdS5)$Trzx8gCr)&2zd zX*D-q?0ghM{8=oV^zxOmIxZtz-Sd5+2 z8yFDT$@csVJQMfa%O9;iW8lKLz6o=fM(GH?q#j^l(bIj>2TkfyNB>zCqWMqv>jCsX z@1jS*$Fytn`fS2Kia{rIGr~R=##kykIKr_CAcJX8pI$LBF;3%c>%r*S#RTB#aL$Pf zn)fygX;=XaCJ{uY4wwY!ewGX?siV4bIzC|t{h=?3p~f&8jOu|KYOsmAKRsUm+fJHs zm_Y&lk|cokb*gzgnKLB_fI37b*@)TMm~O2GafLxwL;SIkuXgrApZ99JH6GUOP54pfW@cvKO%+(k;w1via$KshD~nd@ z7>FH=I4h8Es@L2b_H))Z$x!|bw`7&$_`dTEaasIYETuI%mikSFRz*)QxH>o*H>AAW zqmy?H{wa%e28rN2Ukt+I`{3q!_{af&L0Tj|Ut6pE?247%&=M2H}o=tnN+$YK$lGt$IdoC`JW-}0|Tl9?d)R`>I21a9?F9Q7< z5v^Um+*cix&IV}|FKmz346aINJSaD=@=CPtl3BH%mhlvi6>l(qw#x()5!;w#$~>th zLNzJ^Y(#|T);1gOC`Qau5&E3sn8_{6i`89LMd!tWvom^lA1Sx=eG%5yI`n;nDJNI8 z!`~qgXoJCPm9ZxK7(9ztN8J}J?|(G>hTCJzo6{@>@(1|%#r~QbHECB}o~Yd{ z&o-5}BDhMTp@yuitg8+bg;6~%XkSqobwSOao=N@t@4wl&xT0~${QLJ;9vFp*fq@Kv zWa!lm#e7H1gP3w1sgKj!jIA<_mI!rZ&Wnp|unbLz`5}Gsq^?*mSlhzY`5iaY4u>q2 zGs{YAicvQbc6v8{klyl{>7?!d;lpvu?k|c$S-%2_Dd_Js!GymM)PTzW*KgRk-O$j$ zwqXM=-?UxadDG+i7`WQURJwlswWeC@-Fx@ylg!n(9TEV?d1I(iH@Lbs)nPo&NUUd( z;nV+Dr;h&5suR?+A2RKzy%(Q#^I*;ybqRHY){Lq>-KsB-F2n#t2P%k*t81}^tc8U| z+NwpLKNr1M9?MQV<#oZLz)ZHbPHrS8xN2~?Xnd)KUSUa>&W5{OnCc{B#vlWga6svv zMq0LNge!lbX5M^7`9S4=q;i+0GW6+VeVKf=ZM-!vpZ`4TlJi#BDCv%1h4;3E-V+Jw zp*2g2X8zpt#?w+vUuWvCsj@feum7BNSJ%)h)aFeT_$c@H-+kPAPC|?ipq!nyeubCNuKam57K}RaA6m&nB-Us2Xgwt9z7Z=}s;j=Y_yXqH*)uN-{;7f;;D!w~^*_?Avi`;XjvWbgIM zjsFn`cW>`ro)yN9pva-Xn*!bV@HcO6+$aM=n1jGBPyeL2o)>Ax7)nHPY1dt7x~hu;4v- zFj+g17)0;{D{d}aW_OrIdkNqu$I|ggiJoU-Y#i;%CC>kGk3dS;zzQ-7^r&T~ct4lm zzO5nbw5j!4$9mW~cvH&D&o64pn(e&%_9>&e-r3z+rzS4aj#F=6lB`loKUm3^`yti}+G z*2u%H-=B4$^y~HEpJl`nWOShPD5D99-ybwaKRsadjFG?L z9vsrqb7RkFVZ%yfR^J3N9wg?ev9^i6z9NR-ftp*GWDFLv>d_Fo5&K++1_$lB`FpVr zq{E|Gv1P2XbT~zD3N%(7?stY&9qH^$5jIWO18I16b{d>Ge*Bb~h393P6&8+&90oHy zJe+jj?Wf1^dQuwQX1{>?>U1&(c>MJxhN8Ny(qqSKp^~n~*Pc~U3dAMIK#9A%I}BDu zd3o1?w6}lgfgtBi)q!y8<3*slO#5U^h6I+ED@C1)J&J;EU}ECKz|hC9=;9i&xVX57 zEub}Rt*x)3qvcnuSi!$*mkN+WMn)!qhQf7nY!E{)9N1Bck{hk}!uI6il^msT+F!vo zyaxFt>Nt_W_^2DNk2A2&Jg{xs`&XvGCqP0qUTafPRD9{;vJ~x|({RjA`dmi10e*#@ ztyi(g9HeH-jU(ix81VbB(9rEfB0PHZ=$Ry)Yj1YN{Dixh1Eb{pb~?a#XTrXY6aQ9{>Zj7Jt#4Y92;(0>(s7u`n~4W?8j;$BxL? zuVu-w_r{GI?HsiX4I{y{!m)p0H4irm%fM94GJO5sgos7Z68Vz$wl+R7TI>R9Z0FCP zWTXhg3KxAPVM-G4Vv;7RinewPrr5+Xo6#n-gjwI>__Gtbr3{pL!uRSF=6NEa==1HD z-)%ImL2>1@%+oBp**u*eGM2rb-erHbD9Y8XbnL)Uoz0@6qLsC^e5j;cVjoT5PJk-& z(uWS={Tfa4j`+no^+`q%uU1rA zg1jBZFDR&b^=b%IF@2Bv9wYL~Z8TaN=8oTk#9= z$XBm;nWWv_v3A>{G^_sV>S_Zp4CCl)Ux`gk9IEt(>9^_Iw_jysG=z-3j)|$kLkh!I zs_n7L&Cf4{crr2~CsGQbT-ih#l_hv7ts$g@>tS-U(*5t&kpFV%Cgh83^myF{J49Hv#$9L5Ko z`%Llj>Tmr8amc%OuUXC*A@zIr?OQx$r}sIH?2olY|NMSY@@*X;lf1;h!xW)KL_QT2 z^$euJKM{b+Lo8NcL6&&I<=am40vqMUF#;M{4(Fk_Sivw%Ha&l58|dx5&dbLq5@51x z*Dmtrl7mCW^#jif+c(*}eEK9~)R?A1Izgi1vr|LH(FLiKrjE{nKff;gYKd>82*VyC zwywm?FItC;fJ;sfdyqG)?%caaUT%?`or;&39#%$8tNZfTM~`EY4U!m1@OtqgdU)8v z+UF)0IdGfx+}6ajq}o?<9lrLtqNt>VxDc2i5x^J`N;nS>55SfQ!Gh_V$9Ny3^M?yG zE46&bd@cNE)jFstS~*O9p=SlchPY`GZ8$J~B!~ zzH);9{9pXz+#JdO7Z?7Yd|>*2{gVDC@BI75zbD;uf@c>0?56rsx$5f3$C)SOk4GQ9 Hc=LY)8h;yV diff --git a/articles/introduction_files/figure-html/unnamed-chunk-12-1.png b/articles/introduction_files/figure-html/unnamed-chunk-12-1.png index 142fc901aa7d4b2a4d480f2ccfff6bd0c78aacc4..e125d50cc94d4ef891c02bcfb76b888a2dea8286 100644 GIT binary patch delta 24535 zcmc$`1yojRyEgh_U}FPH8HfrJ(jui;fEaWm2AvWT!o&g<5d;LJ5u`(DNfi;1mTnM1 zx=Ro^*K~dR-zWAy`|L6HKMuq1TPzpMcg`p7`>JQA#jmT2Tj!EaRcl35vA!DKbo1V} z(@i_~4Rdu}-u{rC)9l!)8Fr;za|^LE+6gLelwZttv@|Fu$+lCr%V@^$dz!i-^()Q( z4I8$tmo7gyYsy>t^UrcupKrh;PF>#anY*HPJmq(*PK1@R9xit*_%$^%Gh@0-Rj~YL zQhdD8E?a)h10y3NoIw@Qsi~>NId_J$XU@c44ig{jEG#@m>;9vsr`JN**T*OF)2GvG z*RG8#DA0cS@}=I%$F5!tdTFojC3|{$zUPsbBDz_s8kQys8H`M_MO%3`*Vom3?d;S! zb?OxR(WA#T1gD3a6(Y}jHayvR_$IyU`t6Gfgk155K~lC?EhKnGuV=m@Z~vEg8fvV;rw{F=?o_&xF+EE zjdZJDmu~6l#b;(J+uPg6CnOlBHnj{~+ImkzM1_BjN=9nFbz6h&P=nm=-MizHl9bfc zUhSD|F%dk$NYgxGJN4)1$VgIClPaNQS-iU?P2aOQO=RD`@S5TFg$0L~zPH=f9I9^P45SsOQPQj(WH;8vuY`P?udLPt$4uDbfl%s}n=h=>RoY3bt{LUj!d z-^{Xt_Ky#kGDQ)@c)i8*gydwwuscOo#!csylwOL8iq;hpME*>JhDS@onRCQBqlM{# z)YcK1ix(BooO!rv^=c(;ZLZvQv)T1qH*HdAOxCK8JioQ~=g%X;!m8wOrW@8)Cgf97 zC``MlxG9wEs7J1@Ms3-a-chgk^x4J5wPpQ|)l`O@ta$Wo@BNNifrmR{s>V$Nwzpb5 zv5`%yk5Whob#!oGXJtL3m20a+T)E=ad^ok+dpKDumz|9*y5^aZj*gB8vzYq2t;~wf z&IM21-7CDZF=5Qi%zff}Pj4Mi40>??{wgJ9<-n>p5e2TY1q9=ygT4JxR@Tp&kCWr$ zWylM!EHB|gDLo~gWjveHxRX;-Qm)^)(Th>XL&RritCo1O2(5lcxIXfF&UoTFb>Y>k zS2u3iQjgW5sIG3Ly{cn8qrWvP<%=gvN(r;$#TPGL&@JCz{p*8Xn&Fpcd)SX1t5eZ& zdJ`D97ZY4MV4b=5r(ol+1#1cI`Rbw~sgEB&K7IOB{?@HGIW|Ml+1bMQsiT~na^zY` zPFA+Dv57p(%t`A`4w(RA< z@L=6m{89!lAK$IC=DK{xJJ=Zm-#Ahf&CHT7g^I>KeYz1VYwemfU#qGvzk2nGos;vW z^`K^5l7^5KwYi>NbZS~!#o5li>feJq`rgR;b3J|j+)tNYgs}Ya@Y}a<<;S;dN)rfH zSo-sa-=KP5{_nn^ipor;4*z&Z~ z;%xmbf30ZDzM%Rx8j4G$iwhlv(zT*`jJ6`+xYYMJifzerroO~R*XkeB*WT>!GF^XY zufsL#cL{j3tMPIT~S~O-@W)#q$~&8I|w(z{$zl*V7YO z6M3HF@Zt01({XSpSX#cr2;aNZy?cb7`&w>p?n8$Ty;?NyuhPKUXJKKncXZ^~ zw@(sJ`>m=yzY*gA*i(NXwBSPktJMo$b8~YK#uM_J=(v3Ajp_&M6Ns0gp~+aJ z9LJ7b#KKg*diBNRb`;zM}4+G zBq=r4?y9^KW&P>1XLZ?@J=33eUJgjQ7RYDP#B=uCIivO*o0cr|Fmhd{rtF|tNeor2?jERZ4d-v|o-d=KZswF9JVG>cqzA{cV`tu%@UjFRaN4Kr4Z2GJBTe*f3s0(|d z7JmOedgRCjDk`e@xHxkDZ05&xl@t}fqLy~2`}_MhABfP+497P)wj=QoQf}-bBI^71 z@82tI5q|DDqoH#WYRGGE?;T_h;@RA6B1kqa{i;yRu)o7}zi#C>tWEjr*I)DU@|K%o z!J`myVlAB|FkD#fISYdcy<=mY=Tg`$bidcu&eWV|F&yj2Ul`3D!(upqdR!SRCRQyb z)-UGt@g0j>E=vAh-kXn|=W;vAI^fH?o0isSX<_DXFJX`9*8i-RR*H7m-Q7KiWy2;H z7}eC&#FxonAZ%;3=`+(w+lxBHQU)O}FJGRpijl@mtq?5+_Zp#{?_h{}o--JqpokW; zg+b6@ZnRy*elki%R<@$x18Nr<>{Sfos#UAXw`IM3TfJF_p@14CZzBzjAh9eZB~_n$ z$J~QK=n_`8d7WSPMHv|x-@w55KY#9GR0B*8k!!6Z-!W^RxVMK(TAJ4VP)Ge)iloMY zuC>(z+s0puZ6DWG|5jF(;k0O*q?UG0T3VXCfj#|p4i4Com$CWCA+s6DXk-@>QV9|? zl{YeqM?XjHW{;^gq>kFYefwZXel8{)<3~=7)$HgaqktqjI=UDQv-fAwQ{|3YaJqMIeBvA3v^Jozt?gc)Kt&6l0wH{@lBF@4RnP3rd8p zRngK)3Jzu@m&t%NI}cB_=7l8Gkwf1qD**}KpBNJ6=T}5mnJziwrih=d2of@$>Z@qU zG!1&rEQYc8!^Zc6AVht#y2S?+Jehj)Jkml zzWd%{4%1fvbFlV&U%ZIGmc%j*P}#=6=EoL7taNE!V9g&N-UR?c28%H8c{!!}rY$*2`k28}sv(cU$y-eQ^+Vx4P8l zu#%P*XF`2Eke1C@ht|^KoC=oD%tQ%`anBbI5r^s6A3uHsK1})b`t92*hJ>LZI#C0F zmVnd3wADuE!NI}uv#op8&#XZmLj4-<-qh8J<@x>l_jJpibEd7CNms+#T=y);thDpE zH)4fji1(sVndOcMY7t8_6_xQLM{pHIWo11s*Y(yr*5u(ik`<^Z6yeqG#n&rcnD`B@ zB-}6+45Hr3OeB7Mur5o)3@sg1uGV!6gKuzfBFZ2Ms|15a5{Jl&@a{$lE*FiBKlqd* zxtcSp?RI6_f~c4nIZMOGPE+Kt<%>&7H~@dPiqD73D=54S2#CcdBgaLrN@GB=Y8aiI z95NMc`#1QQ=>1Zznij?cErsGjja#HpxUOZW+w^z{#jB)ft7jO!q+tA;ZYU+5`V%Gg7|hey!rFvoRrLhVt&4mB;5?61IfQ!_&fzeQKauxk->+XW z3})G<8nqphynTFL`uRmad$t+(9UC3}Ww?6)Fbq2`_Rbj5LDo>}EqkpmC6uqm75eY4 zx5HG4tjAS7_6o?5*q0R@FAfMWBO?RNkyj;s9e(g%qsHVL7RGXqi~I{^0j>AsCCINX z+P{|}zx^P$eS8)94SpmD1?Hb`DMDvIY@$$zzyD_Tl!PpQzuI<@sP^yIp^W`B6v{q| z^qEtN*+*At|Ld0W|lQ#n&xuj#5OZ zig*-tbhx)}-KyfhivI_?5}=)mKNW?En*1Q**FLP7!au#-GlK~!WRFJYNaot$#cDI~ z{j9dOws#b;?jG0fA5SUSeArfR-||SyV@?2zwKTVnn+pb2)E}Zqx_z3ap@clwrC)bw zi=_=ye_LK&-cM^0EiLM6Pdz+d78Vw=8UhmEC01qc3k?n3D`*nHN)9RZpCMQB`gx(C z3bx#K=YpWaYRCNMGZWWQG(GlURR+7ExTyG3_-{9A-5Kcm_`o~r_3Hy`si||a4^T!E z)6*4q9=_zus%2BJBx2p~<<5bT=G1*5@E?uUe>5Y6OVD-lr(G`X0|Elz@@7qVSv5|j zNsp}>s_^O4Cr!;Q6pDdIas68K2focc;ZggOlgVk8bo06SPW6YD)*4Fsq3ApR`o#a| z6#xAX|M3iGA0^0Xb&>sip2aCD4oXzBqn|`gu$5ANZOQ`M!6F-Ur#hr4v3jf?z z@n8L6%ZZRnBn)8?G`Vv7b}E{AeavMRtvl^Dfx?!rMaAqLH&9$S#u@1G`#yY|rQB&b zZ`=zcP^(wcmEDaMqM9FSO#zZ=uyYH@YxPnbq zgh}XZmH6`(*Uz|7LgT@7vf)uZZfamZxpDeGpeN6y5KFQ_LgvcAgDBmMHGRKaX`jQF z&4|pZWFXk8R8vVw7uU^ut}maIkO*_3`(PiUg55!Kg6!;U+BxI2W>#r{)se+DSTsBTZeFG< zU}nx!L7fCHZ7|yQK9Kj;Q*0SU6_pqP>I{R!^Q(PL<{_cHBpv;8}R{+BG$^#-a%t_9n?R_apQ{vXQT@`@>WyQN!SqP2T zX#ehy^z`-hjY1nBcZ;bSFB;M&;-A}jrc1A$?~uW2I9L}~@%%mL7q^}?rA^Z@SOslq zrp>C#5UUWRsD@=_{yZN)=r`R~&b?ToA_1U&K=Qu7#uW`mIuq%U}}W^(c9Oj{mh$^{XSDTh2AxS zoX(M~P7p;>oMFB@ergLnPk6-;=0@L>EScdC46{GK$1vAhzIpS8E|QTF^5IdaijlFg z0I_@*VCd+91E&j@XHo?0#=8VlcA}u1{JZ05*nqcb-Omz`c7V~m!@_iYj-$-?Jrkt} z`)oQve)_La$4dZyf&7Nv%+B+=_I7rf&r+!tr#?4z_U@6LReq9A6RPg*KxK# zF1xC$kLzdN?XC}0huGMR`l}-rz$2uyH&G-_maM>nvC(r-}tE05Q-B|VMC%)D^Pwjxw4S1fFmMTGY;TG_k= zcZy5q=gnlfq9J9LvHZDEvx47xB-4PLapTLg8V2*czl}XH@uD~MrI8;pRN3xUVkyFm zGaoBRR?!?~Yr4+;^E)-KsgxySq}-_~A;rMgGa!aS ziveI{&Wo*`M&n%{>E5$bMxRY>lq7#-D;2lPB{vs3Nqu?H5)|t}V5|7VL`7BA004+6 zz!NO?vie>s3n~A5kEvLR|4XO-kGju)vswJd5a2((@ITms@-L)8_7%#1)`tF@SN?mg z|MJ2>CjS|1`A_fp|J#+x3;R8#+D+_&qgzR2{SbGJd(K7 zTqi*!^ni8TOl!uUX_O;DheYTv8#Zi^Aue3-D(d!PMcEpBr5}0~(ith5WSQ%TO;<~` zK;c@gF7yGv}QPGPTrkuUi{xPjw0z8CM;9&~DBFhVnh3p3pN`a(qT)$qpXPNexYWQvrwB!JTcJWn#xXgST) zlM)SU9Hc;p>6-JqamnxB4(~XX{%zo)21uT_?+!V!OF5@5z2tq&H4Fx zdPsJ1U(#nbYfHOU=<(SOH`Ux^!Hs+92@~_(ZhbePCH5^T#9R^pVGJ}WG;ZXwDu1?z zPd$l_Qn`w(ej?Lk^`lf4y*PM&`uDFeS#M_hpWEAkqU65V*%S7L&8fElz=RW)Jm`;~ z?z}tY;eZkNIf3QCsrpvZo8NByTK>xNB6y1t?+1!D2OS$W1U>Q@+{4eeVllSRxSJvnbu=J(>FG0OCaq8KWS z%i=$jrm{$4<@e<&TPer;eN85UVk>{9^fRg&bqKA{(26@(H42^c?H7Cfb<6}eoATHU zDn5GjNZK1U{bicS?4!p|p43!1&!*9`Y=s1#Rwd3M&CbQufQrf*S7Y_{>sJHI#gW!5 z(l(L!GcLuT1e9EDzipf#dDXA(9#08BR+2CSa3(!pD!uG{TX~UD%)#2-(`l~#PTxpE za!!2xl4_E2yZx^a@2DFk&*O4(780Km1prr#u_7(18sLt1EJ(yAzQe9( z3nnn*@(X-Q$UnTy;`!#H>c8j_4etceGY|3`VtEm3A&rx6FF#`y#33k_`fZ($w;wET z-QxZs!@s-8EzI(wwRO7vN$}h6aVfG=o1TEyh|PCBfaI@)|3cymC#WviTt;E9N&dOv zZ%OWA1lY$P>6n(S!A~mmPWA+Vx27-H!OmfgGbS37^{?voEM?4X?g$SL=X(wT<+wQ{ zrl71}K#fIiTZfW!M|m{_Z{E5!Fh;E8VjV~K_Zyr&f8H1ihj(-2h&#Bfh1Fja_~AsV z`pQygzqhwH-}97&gxszhg5@n@VvMG+4c^=5X1w~CWT?7%9{U|(r_8>_`%3&e1H2?D|Cl|X+Z!3T7#+QVUY ziPw-BM%r^#EG^;xREaNM>~vlnQL6{gwut+yG+^goVev^ro*UewKaqL%i2cGRqfTPQ zDdEPJqUzUY-C08hM;NwktNxMQVA7I4kZ9yc);{6B+RG9G=0eAkGYxCmP_0y2vMq0< zwZc^R*G8*2(YOZd|KC5S{Z6N8$8rzLO4E<*oE(v*IbvmQEsOd0DCxeDl|NN0CK*nj zKy)G?bx41Y^b~LTY3W{kK)MC6*L^WIDXD%Fcb_ZNQe{l5T+lN|qC=h^$(26l-HH`&-91judT` zXuDbNwO@)g#Hi;jxQE_Q0l+Yn4x(YE{q9tS2&#(DqO1%d!|(jZ4($?K85Gj$cm`T% zJ>%RDcW%Lxk=bxgF(-+?$6#uO+Q?xS`LFtCS&L#E$(!r@q0gsRUj1;x&h(q5JDiqg z8W&nSm!l!g8UqYF^u5wAAA!tOwHUx%F#o!_aCW9qN9E$hXUl(nNf=iI5(4T4ci%?? z!(NR%S4xsJKz%|WaH*y1#d+rA=AJAP+Et=c&um9pNZEr^r$7@sL_PK9ljZ3ciIDnL zrmLwpUx6*@O2ZVdmZmp=C$A%^IR2*y1-B*lP715xr-vJI@c88;edVuiG-O@-xC*^w zu!>ktBa~CLli-mIT_zTMs5jGxLtMiKS1b3|vTe3^p1~6XbA9A__JAZzr7#~n#GMxC zy#tq~Al7um#>E|9S%U5&*s>fQWX8+72R55{LJv5}9#l>z_Y$9*WJ5<;mrGc*|M}v) zdV7gGcYy)Dt1jG;J>JAK0D1nF<^Gz;z9tB$4BYwC@(GKOqXTubT7&9d1P7ZueE2Xu zCyDh2Zoa~7E9F=0z#D2xS6{$K>`02H3t$GAli}~lUXtgS2nIpyvtAs@GKN~?Fj;z7 zNkQSpb2tHuYnixtc&_L;&AcQ>(~a5T!fI+_vzMEj8+toG$R^olppBc?rDdH+$(wwN zZWnRFs_zIduRPkv-!=>acj)lpAg2el-@jW=_h0qc!xvrbWbfcG2zge;!6Ap)Y5FQz z$ngs>*S_b^btFK793TsPR@NOK({;evz(|~0If~Fg-HF$)U*F77Ck1qllstJf^k5n$ zkthO~hJ03R&Xa}I*C^HZmO5i5r8Kor>$Z?i3Ds)q3*NS)ZOunpHb=$8BFy z2@V7rCtF&crC2Ec-zX2IOVp&ZKntLUl#1aSHV!sr7&j7uS-7LRjyI^-T{}*b1P_W8 zX(0l{sHf?9Xrpq_mS8?#jnE_)E<0FV6~vE(bN&@XD8C|L(d6{{X|PIfqCHlPnh;-J zezCr>QPvv{V}@SE-s0k7l3aa{E6Bp{{q-mC&&paf@p9*!6avGHet!t+p4u^5xUUA2 zKTE%rmcD?b5fkPdk4BY~eI37HE%;CAwV#}ssh=Hb&9EMj-?HbswNn*ja6(!fnEghjdUC84`l=qsB^%+GTxtx zir^@XKqTx+WQBrfr$R?XF?|BE6!Vw%Qo`5b21Jq!^c`TWWB8gB=k%i4a z94mb4o$9fhkD2I!s{byC|A{s8|0~0vw6-CrC@#wLE?pv?gUI4TV^GB)K$e!3$wFGY6r(`nCWX?eN1q2q zMJ593Vy^~*NRx8@lCO*Vzu7I>Auu;a+TJTXdGZ9>je?B!eO@5%fUf|jD9@50;|_vI?S66N~(dR(y< zsSuk#^Oj7)7Lq&JE>>qWYM1Rc&%XIj{ikpp1ra-ZIaCp5HW(m=YS)e(uOWl4+AnlP zT|J%@d~@%NDJv`cL53wC6zVO;q72@;QO36c!WwC-guFaW@JLwP-_d!}otGT697i(t zp0piSTl?5RVqjoE{oVCPJ9h4bmk_nQw8+8FKOH>V4O0#4o z3z}0*mBflBd?EHDN3LKUcm}JaPS~02tmiViWTHv{7FM!1+I*7Lt+h7hRB~k zZ(<-h*x35=PS0c6V||y_)+zv|=JY&2iLBg;ZR}o7X*s!iaFz5sW7^LhMV5y%yl^Krl)U;F3GM_72a-Z@K-l=iBd=_5;E^dB$kGBT41)q(ZKqy zL;Qx!xRG+HS>D7s()_7^V{7E9`?a-oG4Tt+QP@w0(64j4T^aZtXH9@EQ;H|d3w}pC z|1Q&!@g~vkYGNHtu#K=hl1AEsi_^82hq4NnM$}C2Alm|9TK;Elw~A)O7&L{%%#kC* zwz=4~5U~%#T7C5JAx~PZ9HWG@CMl#zOJBtrC!=bl9d6hA6n;N~LXfD!LDmO8KiQe{ zXR=HHx0&w^2t|Ydu2>s>>H)UR?T*DMIOr%YFA*|;JWEC+VT$?VPODv& zA`d~RR?jqfMJ_OaUStFED?D{G)Zq+V11L5ART%=!s=DpH)rmWiwGcI2E`6&t>K~*k z<~r$Y_9}~}cl=!Jq0oB~lOue?<*Qqth@F%pG9EQ^ofH=dMKTEVM2$_swk^t3gE ztgl8Hf!!T%rrF}4heK9;5#@gS#MnTRYUO9>P-GGV(-CUlx2GN4*#X9Tppz4sK5#mG z`0x-E?C<66-eSJX_bS#&hEuzl|j*uhl7eb54A;ES2qG2 zp=g~ZSE|jBa*|dq_KM+N@w?eDzPRkdP+0RF=lm-4Y73ke(}5o$Ul0!lp{_G1KJ%-q zuQ!AU3t||4;J|^FLv5zl-l>vt5Xd%{$r6U)p79C$6V?8FUG|QZom3dzlCroG;&%6v zRaK*FU9yO8ZON^YvHm>AX@$?zE4P~`HYw*L2_hZCrJD!(HNCtz7Bq)-Lt z(s#vZ94O|PdHwqJmc+hVpxyl07Gt^5m7hMBr$4OT znqGFC8(EqVL9@14SR{lp3NOlukG0Wu7MSCJ!w5YXbrv|a6gcIQTLj|t5kbL*;+H+v z80H0hY=(Jf!BoMYlmEn7m1Sg}W}3CL7xD0$cZljuYTra@`+H~J-mjq`3U0V_xe=Rn z>Q4L9-5lgCd@U-!s70kgJjwk5WZOECpYvl^sN z)!f_+*(1^!wPOgbYr>}Z0&DO|gXKTJ^%?c)T?txl?Zn*C99i#agy#C=VnV;egR06N znI5RkfC6hfa6HGfRq(GsfVCA_>`o`^y*ytcVf)o33qS$lZ#{aJHQElD)gkMnr|0EJ zOIO`ktV?oi%gYrnU3zYo-A#=G`a(O2NfHS~I4U zuU?bAdCi)B@c9Ob<%zAx!>af<#@${1{mTKp1HvNmmFnt&$yic)ofc?I{W(L)q-<_~ zqPKH-R_NBvo0@fjHKN#@q$L-4@=mgSX9)|@HYkXwjV~*SG)P}Ax6Wo^xE)f`Re~hJ zQAE~K{{>W6T26J6#2!T;jZBwe6$U-bh1_@tVN_D!K)WA8fJ^=T?Kcg{T0{50G30t# z^+TacAdL^i=LTyc-9`&nmeU+UD(~cysYm5x%{T}r5Nk6^FXp?J<+(q7nhs1g0#SVn zdp==NxUw`>F}o_s@>in(s!VBVDPlXO1?w9n)G)ds|mUZv%NEqH!>d%BD4U<9Bf9? zR|ooNw{105C$h{!D$@mXP8KBh)00rrqpn_d&)VIC|^N(JkpkiSXu0BO*j+mhC1Gumk;|zxr9qQPnArQ zM8Si&f>vs(E(@8-k6VXpKrx^#P5-jkpYfu;9u_DfLCj;PonYIxytj&h6&)Co(dvzq z4T*`|XqdhS3K;u(dw;KdnK^v7D#BH_9}Bm3exhflSwD<`jI9pn;V_hxMcOM#s_$Mm z_k@hujtsz?g#T0slv)>axi#bIBr>ojCW&OI3*|9XA#8Z|Ey9hYN|^<_9KEA+nEno- z1yPjr&0f5yiB7pC3pWeN4n3|s+v6r}*;jRSbps`c0#akaF@ceGB3A|eSRv^Gp>wgd zW)BS+(YwwLH%9`e0q&=1dDb(cE@F?fpFF8STDMs}fYhYmLN0GX(-u~@q6j2UPeW7*OrHv}h-UdS%A9JcpYzhw z4nYI-LR&*_q;oJE>MXK!_~V3q-?s$mhKyI7K7Id0+97N#QcZ-5_!H;SvQ(e74?Hjj^%_GwoAQkl5gab?~5@bap7u4Nu+d4=3?k1F4ewh#T51tjtn>2lsIG>Q3nJ6EUKSPA=yn|iJ zb}=9v>}#oTWp0J6rHEG|=XMUABv8~o72YMk?XaqU;XB(mV}&c)z*`=Ae^GRrUWI&? zS^H1OX8`bIh76#~$WnrZ`11}6hgF&Y)Z4|#c(*~|Vz6+{@a6f1p_D8UhT@mM=BVi= z1sn-T! zx@FUQ#2qS!TY>4gv*<5snUG45K8Og48yd8)pC7@7)dMFb2`LFMUGjO<)zy7&gklF6B1o&Zuc^VGScfDh()5U# z*J2^GSa<$<9Tjy(sLi5iPs#hmp+I~n5ZfNt2rn-$TZvFslBXi$4S!N6D0FL(55j{R zcCrD^8P&)CCAJ9LkdCSc6LC@*0g;N#RLjOj0W5HIEEsJ${b_d?ta0=PtCdvBbMp$Y zZOK{>jH_1}90$^g<^YO7f;X(bYQ(f>ayyrjOEX6oa$fhqxwuBsQPd?eVL=*0Wcn2* z45>FmrzWG5BsC#^%SOJx%)Ii8SU%6EUrExRTlB6t5|BhTWfIqM!`CyshOiNNp)D-p znutNAf{39dzk!-L2(PU+_=FW17O@#>$WXmwJo85t$O^O(yH8Zf=NJRc1He|DWR40x=!r2FI`zI;C|}GVz)Vt#l;lg<@z1<%6{*2 z>Nce!L`ITtus?NJkPfIo;MCAX`47&uxKXzodh0UUe$UT!OLO|)tzlP7y>J`szSYL z_Cf6|X+ORBN1~pb7A?FbvzP0H`0bw;aw}zGM(u+J&L|)`IQxJ3`RhcW*1uGLF0>*w(3M{U2uXv09jB^ms_H~?pzk$q?ZZ~nA zJU7;wJvHQj8blhWtyO)^Z<|dfXJ?g>+=jl;dUxgM(W3xr@_;0MTv|rrDgZk;os^`V zul_x5mOW;r@KcD6iZvtPDyuZo=TAL78%Y~DB*%9W;z=!O&X9&QDhuM?1X`MjyLlgB zf{0V!q5U{}N4oiuWlT&oZpj4;Mr2{|CL71nY*wKXs(6R16bNT@SfU#+a| zI3mE;pN&+(3|U-2LF4Tf&RhhYYNcm$!36ikHuCx!EA!-UTm1IT@C#wSUf6kK;XJ`)P5=@p6VYR)(f7BltI`$snmiMPB+PzCm za=HEW?xwV`oG;IPiL_|-vxbf@Gi>VP(hD94H#X`+8}p7@94pij3`#0p#>7m|_jt;B z7vTBar&vXJz@0%th8}DcuZEYFLP{+s?~K;LOnuFfoPGLx+|)3}nIpHo!=M#%1mEYp zzChzjX&P2(>}a!TF%UM2^m)Dlp`R{9*ya)~^A@diMB<48VPXY+A zrJ3QhDs~*0K%fQBFI1ADM>=xATIBgZGP>^PXH*p`=E23})cuIAyzJIkb`MQ2(c3%l z{#R%%A|uu?zxn|lz5|e%Yg4!JXhevS?lB@vPy(xgB1u3yfb%>JfT=NnIS@#ty$cow zInq+DJxEME1~_!an;#MjS;feVFBvFBQP+ZilMK~Q_qlm;@gol5q05hQ&rd~VGsk=) z+G^E~$ydEqm}4pPnYH!OUIN5Jr|_la(u_qz2TUiR~V6?3( z1R4W~3$s*X1k<(Ipv(^%F67hXnfqsk=64;x}9gKP6@6( z>z=I`n;w2p)sA69B zM#&Zx_Sp4bclaIi8d-WEG$+@zVT1Je;)%n*&RC6A94h?DHut`2%>K;vlXk9WB#)+? zE)Fq{_9~8>8NE$jmL?C$$rYG4*xgB z_Ta*orhG>s@#Xm&6iJ*nOz<>KPEP)GC-8Ixk3pT@v89V$==gg?Y3b+=ui4j_qGLXB z(Lh1(CC2vj{)j7G$gFVsedQ6j;TeJS@@h)=l1`Y9&rTd;ruqYP@zfg}X0>h}8F+D{0+OKY#xGgC1W_PY$)M zJ$)?Oug2USYT$%Nzd}VR4?aQcOhGMvaEp z4>Y8jX|jj1kC%4`8Drw%lY4f4q>_8!%o@Hp|T=71-58BJ@(}J^K&L9#|SQ+f@e4i7BuEb3BS^!+Z;Mh z>!08kH@>)KLwqm$h59Xg&en=XoZr}ut{$-|O3Bg?w`7kqbI=$$^x^^!1e7DYHYTdR zTLpOV5JL-WG=VcHx==Lq9L*H2wiQ14lr)x+t=U_&?nt4{Zpyy=mU72)Tn~QgGEZ`h zMH&;H)zSWo5(1BibO)W*Z%q@wvD?SN-vn|^+ZEHmS`@}IE8^ngPwVOFMV6SnxbP66 zx%JJ#Gr33TXlXaj%@~&j-WOo$Y@G^JlR;NZ3)_^T?g3ftIv)SilOCAg2kt7X4R!Z0^0qiSGv`!y_Zd;n$Ok7>d2H?JzxLG!N(G zS%A!YitGYv9+zP#BZ?lGp1uobw|GhgHHw;U#G2{(jUKSQ0V&}r=-to0zU!YKZy!;w z3TEB0Vb{jBnwpyB3!+%NUS+*r7g*QhEZ&gSfbYwfx&-W(en6%K@y<-~r$JD#ku zwY4=(e$uX8Sy_4I$ga~N4p!A6>qK#!z^nA8YN4|jnWNhuar4LLCy0M-<9ayQG?}fe zq9PTiC^#P^5{PL4L%E`5x^U?`u-(`4^3RYW%t2GOLs`FSHrJ9g~x+o)KT;LxiA$ zL4reobPcGK-WJM3SJ&%!6glw@oL4)hp1vL-?sN9`CvbG!744D2GtU6{zis#K`hG#w zc*B+uv->g!KgAIe>f&lI%X*LaU5Kb@I+bi`WZP^Mw>SR4dBrCp(KTlk$iDRTCU4$U z<;hRh3gM$-A~(Kl#&K0$SbMZ>MSgJ!W&86RCLJSkUa!jNee*Ue>wHq)K%A0M#$L>z zSI57BG$1rI~Zr07qSP9!i46Su5;x~ z2NPbtz2TlxOvKzmg0v&7uc09>?eA&05koKo=|l zGIPg3P+fngYH(z*ua9tr^d=Y}cB`yMrlDvujO#$Eu-3W}BxEyG9Y+!5u}a8dAkRC( zYhce8hOoo9B6)6g$VO9CCa`wN|;X|DX+Bq<-$%-#mHM0<&?^;22dCI%t1 zHCOyM7!I4PZx^Jj-_kb7fDkj!$O1ASgI+tB}!*UhI#9 z9-I3r8D8CA`(xnLMp3cY-oTqNqjtJI=Fuw}W#7K-dnwaBFz^KVPJx_@P)QyR*fe~5 z(@2>YZM;1m72mZrmd435@Tt5VwE$BlcRwHBPC9PwGs?=er=_H}@b+sM|Cygq&9&u3nCU+F_g->=W=0!3p&+1C zQ3iR{xV3T~Ca9zc=9rv0Lp-dumM1Rp4MQR6c=|dH`mdv&Qa%>EM9Nys>EYx~+_xbiUg+Pa9>vKKC_2Yq_*`0;vj4}(eD zK^CWKn#E>!8RGI%eQI{M;>EEms;ZBnQcH39-+(_xM&EfN!{g&OPW`GX!TmpnV(|ld z_0Id{e`~qP5FOX{SHW1p(Gi(!2HyjZ>QdB)Z4(j<>)Wioqcim@H>Wi4_f`{Q0XP(8 zHr@mk(PFAkE^qQ1$0xd3C==uG5wF2K#kxLcVZnp7Z#2u%bbb4_Hl>;$N#-uA-fd@J zV_hRD|K`5GY*A2J{>EEMM$@y6`;N;r$B)=r@l|cTtyR+OH@MgKX1mml$4pvX{S0kC zl8hA@MIC3{l#jW}tF1ms2vt!FWhifYnM%$4(W#qHI6|p)cW!o2?-+0KyaE4S(jpk2 znkvE>lMjR zm3K2e4+Sq1p(}{=JEnHMZtmFy)=%J9569j@k;^DO~}r%-nee7VB@5|KnS&y-T5g-j(4&xoALp^BxYoPnN&5;L-9 zz`4zS|NhmR%;*9f+`_jR!c$54pg$9Trm7<0I-ZvHX-J*1-2LRt_{7A$2M?s&^qFOd zH}XitW-d6E)8}|gVlvJ7s}1z^-H-!KRbORaLPdEOpr8|5c(C3wA^``YVA051=(a+1Q z?#TP*q}rNig$qrAM4W%piT%}8tkqj*2T@}g@a6#lAQnWaA3_h?fr!MXR2&j7lI6~S zh^C(q5WR--%hK1tjzz~Oof)EUzj_nS}3h} zqrCZd_Q5B^!!Ka_Iptf+euIZ1)jF_3SS?6d{BO!reGl#eTvSH&rLJsNBQ}8Y2{cSH-3@` zWfg7RdaR>;_|zYWmY9vU0w)GDGcyZoYyND!lZ9SVYv&<=|LokAmEzV)o@Bs97YIf* zCA>G_gnp{6-HAvMq31}Wwbipvy9mAp#b#_ZlLm7mS{+D7dzWM94%}GR=%^V_Q0XrI zy<2R@I<`%qyU6xijB%w4XfQMjr(`G z)HLrveu9%LGDy9RafwAOhehAxT~-!xUQuxuBo)^%=YQ929&O3kw6c^k z5c8FxsBFtudS$u~Gq&p{nOFTXTTM6RB6DI~b(@zk<-*>!$;|SK#zwm9@91|ti7I9J z18s|TWx_y)`Cj*WIYzf+r^x*~S|fQ^sAa4wU;ns7lfG9V?;!O-VQ2n4$1Kh3pNX~> zK5^u=q5gQ#Sgb&T zotgM!+3oCjUlT_}b{h?(XujX!&#hx-$@E_HIh;URNv&u<^(0s21k>5*vMZ|xjV9FZ z=jZ2NIX&PhvCQLelKtgII9O*1ls2GtqfcTcOrVM2_WYFf_ns`&83~|)torcQ_vO2x zSMW-<;q^=V{mUwpqvK*@*B2BNJbw0U`0c)ebCLJt<4i1SuO`%^Mo`N|iWFtLK6(^^ z-o)hatkHlUc)!0PDM(G08c~YXlw{5K-+%JvP^;tRJiC{x2)`1gJ5*nGr5$?qrrrqJ zBNb4Bk7tUr)@UD>=#XC3p#EITWVZLrH5dQKBp#%EK-@&5{D**&q7xpq6q% z{l+aCc;(0D)SZLejlm5Ur8?f~O1YPzd`o4gbgGUZ1>J-*MdOFm!%zZIK`o&{3yvt9 zCk8s!26(TzIKR_thZbGAoHOGE_oT%Yedcw;NnIL69UaVI#j7a$ixLYmFWpFAs~xda zEwp4a&G`GksxZb!E{B(&F~6%iz;DU85G{8;%UMoHVEDqwo-iplnr`s>3l}ebhKQ@m zQC^OzJ(l+c{*7|brSP=0v`0JBp$!lZ44#+#|$rz$RLTxue)|I&@HoW{Rr;! zlk^BQcy*;Q)jN3<7ffB#*L>4L`1EJaoC(j#X$cQ z=L2=`85E!EII&C_+`E2Y9bpH>=_&j4b}a`;kgfRQTEfiAIAY=lcu+)0+^F)48{==xekr_v{#Y09OK1`j$$U~2d?{v zU#*<_9MHHely}3j)Q;|c-B%)>a>s4&T6?@AkHWpq$=M4LQjX}DzI?q@7@>C6dIe^%S5%yZp#H+KRh)~9i~gkTG34OAf`VG3_obYR{0M*d;imT}HhOKf(R&;> z+YmN3#omWxDg2v%cIMgdM4vc7SzqElo2+k!lX~m7Zat6VL|1mUDdHgdYP9$>=g$Y- zb;yddakaFuw*HKRAk_feZMk=c_Pl4=I;v20D`!x3!HjZR@Qyo+?VYV z-@e@jXaBUbvp9UxZ7eL@qIyJG&)|_KK8X$B~C^&`X zhGP^A!8;+4lV}%s<~*`=r)tmqr3#zJcWj5__mHL;F(#p}O*JS)0XQ-L(KBIoO(o9F zKOF5qeya#x)uRFS1uo6(eRVvyZEe9=`1T&FC2$avVpDq;8P zKmY0xHfh4Z@$V1>I`;rCI-w<>7W?nv-ZCJO3l}c%s8$AgjzwR8l05pwK+bf@uRP== z9bQjEML}p_s~ndKUNUr3-p$qZfT(DmQY+n)GXd~r#>b*lLq$%XIkN_uu_tnL2f4Yo zl6v8B;)3?otM`DriYhBqlgW=y`nR0C{YKFnGpi)+UVIe;u?!*rJO#1+A?q&z=t(w)uy3F^>93viazKa3QF$%ReAiF^+>Q*TI7T_IEz5JIu!R z13IFB>K&XB`?QQ~-)0PFF-ZJVP?Ntx$NSrd@Os39H=9@w9oo;v_T{UJC#=?cQ2u^+ z2z9u4dTzyVyWlu+7vvfG6SrAmXi(}x`mdH456uHf>-DO;Twol7M-5SEli7pHcMp zJzwfuTN!|_*KZ;=6`{IR(C+dry@^jfA13bPg-FeQz7N(ZQ{bD&0Xbspjqviy11C=G zfnD+et!6K$*3Gh>y*qZ?$7!Jt?d|zesi`yVD4z(y&?6P8wo?*D5yD{4P{Q`1&BEc{ z=3Z=vGi&285xbEyUB7<4!P`(yPl7|ut&-3DW&idVfsZL6d3mB_BWk|(6E55b68&kK zYUVrGJb0D>#D4=s1hC5_)6nITlG1L>tJ~^zH2m+M1qCtS$dVz?NLB$10fCbZ=X-0s2j**V)O*ZGn%$ z+3_`^0LJ(;rjxXkE=CbbLEIKT+LJPWg%3@C(=43b_PKO6y?)}|ZURf=Gbrh{9Xqb` zyh#&(DRXFz7{f{Jp<1I1)ik{=9XL{`y!JFqqsOEu%b=Ly+LQbIs5akAnYG9zQJ36# zb&;Bm&YvyIaC4F}M_tOy+#KCE)pSyddU);*&r)mE$gZF6%EL+68lUnnc}ugc z)B?8w_6dV4dk>0=Y92|c_8VDcLzn{(k9HPr4d=>r9KTj(JL4_-eNPeXtu)3HG`YsH^8_gO@+wta0>3gL;HeJDa1#z zIby-=hiJJ}-1>)8q${YwtB7BBm zTtgtd-+(y58G%Gjj?N=Y5O3ve0|7NArHJXEqZ6UB=hx}~!TEjP_x_&ud7t-r-^!o; z7W+4?$EGWaE!s8h1);7yv`MYD#fkiLb43KDx$~t5vu0D8ySnU7_&0aoGn z1Edf}Lf^f6|} znM$RRdg52z(#97E-KYNK543Zq%tJ!Dvg>1?Y`l$VzW`J15TyJ1I3 zWrT)DV$F@?0rlOuE?h^)3dC3 zcB``%#pfC<={s8PJZ$GSglXsUH9us4G}qhyitt|@RBHA&>jC8Q;lJMbAdcSdPc_2YitY<%Q&q1qWAbwTHn&Y0z38^`nr% zUx0x|9JwT0SZhFT-nXvF&MSe&<&S(f=~=2jmo{^_M2w+Z3!mIgQIr{{8>y%jNdQ}ICaC4Ti{|nW9p=Y1;zTywQC5&^qWDB_)@sSkN*h8t~*Z!Arf!!y_;# z$g(%d+tJAhrDlD!DssaHbKG-MT%&GgSXpT|g!>l5`SfRDrwwv1Nl!4GDsfYho8ZCk z9vnOq`c-`0x?1XQ^xtGVg9c&3yUl)c`nE z8m~b|!(~2y$6`lmNy%_Bf;zMyRjr2!6ZMaxW-FJQodeL4g@goVW-di1wP*Q5*4*^Q%q+SLjiv+ajx^}%@ilmS+YuY+JL(OPG#gL4M zY`7_0r4Oi&IN8wf7PLCdDDDPgH8eItw)h&$6PixU0znpqjWUpak=Gn-@k&%7n956XJ#*1RF3w824PlD2?^!hZoX C3s|oJ delta 24643 zcmcG$1z1;Yza{*)3&f@r3{(UOl@cTr14KZPP*Ozc?%o)HiYTIpk|NzG-6$d=-2zh5 z4U&?xw$FRc%s1DZIrCj}hUbgc2pkRs93PFMSMgmsx6PY3-$`!TwPVM7+3%@5r%^e z@%}Nfu|1{&b*TnQleU?enVYGocvOVt6%_}&OI{8(r^bGLwlCIhvRCiRqwPl19F&0S zHz%}Gw2HUhy?Zx0AwlNPpFc5)i6$R^G!Mwo+*1)$;+b7_S$wW#TZ8pjo0^Z053YaR z&MuSww{pDV>AhQ5HQ&5{%Gvb5>CB`CM37pKhYz>h8|Y%Uf^QdR0m3 zXm+cyTR~*HmDlppC#AyE2@w%r9owiY<29M_#J^`|8eCSbndyxtrJ>K2RH3 zYMjn~?3m<>7cVw%+H~#01=nHg?50C!4jw$GmTj$286@oE?;l%Lb=8weSh+SrS}1Xb zfkLsAUzbW2@%E!#U7<-y+*Tva3Iv~j`S8vrQ%UQ_1hw6aj4irf^~J`B_cP5QIcoU(HpG!o%&NRCZ2IPP_N)(dIm_ zq^1_1pq8y);IayFBWOMRhN_Tz;n(`LYgsutWw45Z=G~7jU%qTP{Nu!_Z3e`RjRWJI zh1%nc`}W0;kDKljbymf$_8#t_*6?s%n%7&Lo3Nj%zO;MyZmUi%0n@EdZ$jR` zKj`$Q$2TTEUct=lLx7A<>{(+Arv%yALRXsH+}zy^3^D!vx(W&k(GIhtPo6(l!cW!I z*7^hoC;Is@)YsMVD0f%i{_u@J9$dS2ZLlpjd-IkpypD6GMa9Mb#S$_ye6*?-f`OZ< zsp~sFJ>b3bZ5w`xm7QG*StD#er^o_wnOL z#O{%Sy38nicrR63T-@=V?(R1pdAuoMr*q4td^y#2?c8~&klS*Rm^1V7_4U_c*rRPA z5V?N+dj0W^Pxf7&{C7OqxON1n@jqE zSGxW8^gi5>zjlq#Omi^JRQ1$O;$16<=enAxp38Il%f>$o3$YOq7gJMHd#O5J@7Xaq zJKNY_9ZJR_o(8uZ8y0rHsHo^;%ZNEv2@n39Nq86baBxunuC_MY@#9yp*D+C1x_l{o zRE5KxP26h|HP?sW)>p4tQy;IwkEA`u!a{s8{LnEp6x-c>$6|$g$&Q_kt$S>YOH@>J z-G&YLkIU=Ut<$z`F)guEQww|_8oGPeuCV*}S7T$39XWDwX@0tPxGA}u!er|HTrZOT#i2|3ou6HQ|NdPwSWm?I zym%3!Rs8H2k`2X55pnW+a#BHASwHCI>eZ|3vTaN}_nwv$ci+k@dVZiKJ@MDCU-F1? zB<4U>h&UT3r=pQjydj@|lZwEB17}sz469=lVqXOXB?JWQMg4qxO5I^*I65m!5cv`F z{{1;D8pDa(5AA1$k6}Xztfo+%z z^>iH^9Ab4UgPuHl)-X5GWmU9WDJ8?}5QP%-bcm3nSPHsn?)BoSYqff3VZSupI9;%Y zM#6jfw{L#GZ~kJqKl?ccZYpt=bYq3vx8J83HogD(Q*~0V$E{#ys=j;8nl>12<~Mh&ONO zTwPuDs@|PtIBg#GCsojKF6pwAl!A&1dm;CoROP$LO?9zKT+^eiD#8vkJUTtQX=%w4 z`}XbIUOrA=DFi1PlAJst|LWpXx)6he%!_DUMpH4XX^$K_Bu=K>%y3hvN&b>zcz8IX zy!UBy?V8rw2W_>qdlxh_7*TX_kAvy?OYsR=gKUy=*RH*2NYqGd&9?E6-@)K~5gB^_ z{{1>c`t(SP(#s>#a;mC7>079I_GV|U`}K@TI3_V~{xT6A9o?(2YO8x;Tsuk;?p1!Q zEtl8$r+}K%bUjkM22Yz}(8x(v85BlsjgI+wd!N^@W6(iAefp&RNJU=$j$0zN#sl;R zS2s65(Us25&cWKq=U+V;Bhh;K^-E2U;2E$w*Uz54$HvZHp0)#tb3ItZNqLbdpz;m7 z<5A?@F?x{lj$`}y>VC_Ow$(u!ZMis5bDPtQ{2StKh9W(212t5Zj*gDI=;)%b{Aw2E zyje5N2B-y*(*AtMI5?!SBe?v_+5w(5HQ&BTO!rrdW4{3g6wo$LJItQrEo<<2{=AVR z{pb5@p%P%}9#v^+Pjd?k1%ydtZM2uyHj4wPuV1}>&35!C*)DqHy3kK9T)I@tymOx% zewNRqEw0?3-(aXAp6o&RRKK!E#7gItHn)Ya>%v(;HE4jbC$zryM@I(9UAc1Qr50J6 zPZ=<3w{Ac+LWOv+o?1>`UfzExfX*%C=~F7K>)ZI9gM))*4OF2QJ!{Y^%GGlt3E{2G zB5}wQ1$p^5TP`D#uD51cUDwu*IC<)ng1UM_bF=c~=KF49IYh`&yQ^2dvTVi@mX{XT z4;;8hV_ns@(RP)k;9@1cSfqG?$ISTx2fdS2;`prZrKQ)6jT7*BfKp^>vO=&_mvOrn zh7`Kfu%9}0oy>VWYferMiL{u6?RC+J2dhKfMdtet8U4(-cInyPYuLn>OO0^nlxaefg zs67|FY*To=?cKZmSmL3NrJS`!>8%k%iTQa=H&gdrz*TUw$=r9L6^ksiVxv$f zI=4RDD5Fn$uz|+dDz09?-s=D%&U5FRmtt}Gn-k*q?%iun(tIE%CxVDX6XmNZlqwe&S_-9r8mnfB z)*E9p)~1}Q?}MHj7AR!n7r*!O=g)qDO?{Sv=nFAuKgd5eK|$q1m!8#0^S6eLwr1Bh zQ!>8gy^j=(C+_i1nyN-@q&LXQQV%hsU)=?;?p`C^92G|;+ zIma$J&8Q^;!2*oH%FC+&fPw0S_T*hVAdlXH-QI;;2Wr;)k))Y57!zw*&fCbkf4>;Y z|ERNI!QsmGc8%rbI>bD@B|7=@CXbeNw)*-w!?e^#DCVR}Mt(%-K$yT}jz`(?|@Y=dvRL@H;P zhAc17=4WS96?9t)qI?|oDEc*u_O{wh^IMO3NlQyhYdFPoZhoHa^y#M7yA(0^vjtlS zO2KIf35hB$=ZP)3zrV8sxX1(CW=pMRkyOjFe1R^;5}lNE)lD-a^B^Ut4E=5U_U+zb z=;uDKUg3Kk?I`rwQWTf1t^@lhg8K@&w@NS!jtW*~{+XZuK46)J``JZH8;L}btU*lA zEw42_iv;8W)RdIFOWX|yENxZYK5l}2x6WR20_SpAQ=RYk~gf z1^?&U|GwVj`qLEs{pmol^XDG|KCnott2?^UbbP*Xe9vUSj_un!d-bu+2FFJ^DU@bE zO}Y&%)K)h8$O{Pu{P)&zB6rO{*QWe`w&yy?1o9b=X94 z5gKQtLrA_nMJ4XBhr`^4o^s{}m=zPTXof_S@TTvLh=^cA|50Fe9KWY-KXBM;pr$DB z?rMsu3y<_l994)9CgO>+``OAZE~f^(CA6TrTf->HN*$4VlumF z)onwrvAdyTl?RJz&gtA$keS`SG-}hE&u`Qm#+5hs>$We=yETH1li$&8 z4oki~O2`_gRVDzH8|O|d<|2lgvu(J@?4qUrC%H*@T+B?U0)Kjwo!@C;Mh{W}1F!xo zL@_e$F5ShKMh_l5Ks~)W*$%XdT(20)K^1?Gng=$Oo}m$2&n5{rII@7)6x;c?80@2u z-<|Hv$o-okAt7Y8w0yinp%A8f{uU%bxWuo0#PzFr85S@cEY9KtSGMpv-B42?mV`Xmi!{pc)VZ@gMjHR|3*~E3Z{Q{sMhqcg`}ipY}fbi-#IUy zrU>5KBAi%PU$3{k_~){WjN+X;Vb0UB8hYQn4j8E)rBDQH{@H-1<=QWch}+k&570+Y z#DCnmVr7+j`VbAJqWfG0yPGEY)C%V2ACE};g}F1?OSHAM(S{nLd+oV#hZ>LYU;=7} zRioNb$=>%8qEkh*8mfQSY|H7y;r4tD+!O6c?AJG)ZCD;DXXGdHcX)v#0? z%h8F6`E#;V6c?$zW9$D1_ChIe6*TQ|39{>@KOHCo9qYoyi===AeyW^w>z=yPv_emB zul_(yxQ=SBbDyQ26P|iN&j|T z1PW~?8`$CGW-*WTlt7wQTrM*1Kyf;93JT%-gsl4kpFmCI&@a~0FvWr2l{7Xsw)U(V z7xQ&_w2FoJ-!yzOU(v7sSN;A!?(zRg6ZuyU`S%O|3sg}49ZCF`UHR|LqhtOXMEPG| zSPkfh_5bHR|DRo%ys+=e<5jx}5CERL-*?5|_;7A|dfGdz8(kpoTB>zZ32||mA`+>@QK;6_QXrfPV&$+6iDu2H57poqagMA_%%R{*y*i% z1+D^&%(fFmY!?{TUC`-N<>_+%b{_k1 zi5jB9a~%(w(T-z_Uxd}w$qWDKen~b9aAES6wae%@R5Ox_690n0cRNo~b-Apf6kPE3 z_0{=OT+Hb0x3rUy(cq4@Hp9*%SGZZ|^Or_U7>$TpX?}X|r;)+V%}}epmc1oT;hV!h zK3wc#2cb1mp5M7^*PS>N(IP)+ZblL(dn*E41}%ilem%^rq-Nyfu^;~S;!v*^AoJG^ z%#Kz1(xOWPvYyS&%}0u(Vq;H@W^_GMO!v8yvozD9V|$p=5w};ja`qslW9z?g$hbTn zmCSl9^kKzsX$+Kf(*rfetpYNTp9IM1jb_LG`vaq zV`;HZR7q7e0Fre>f?Dhak3A(l<^w?vqt#dpUi0p6)`ZC4z~evp=F=8RhJfPL zM*b#e+;s07`cv8|%3PFyb!2(8?8p63C;{%^wL?HmFIj{a#|yLif*kywPE1eN6CdxE z?xLr+Q(VX%{#ZIS-KY@@)+WuA7#CM}f87=qNpUx-YKO7hqZ%6RN4gSneqZKLNxR~G zC%t7F(tA+tq@V^fvG^e&0v;citQ4LN0HgCa6t$ny zRkNyBfMQT%)9%zLQ@@5nP;5E>W_ZV$#mV3m9uxkQqq@&PX)P*+Z4?(AM^YQRyJ{V2 zQz6g#r)$^`gliX8t-l^Aqky8xLIOpRSS^i55G|LwkBaI|OaS=_PnMnX4)gZjvG0uS zRc{7i_p-9GJ?ZU`V6dE4zrH-?iy;y1B*`FA;wlP}#4M77&?J$<4TC?JSLTX!QY))N zFQw1@NN;yGXv+i4QE7b+csH6eDI-~fe^R)9-9oWgRAaKY+@MY={d9V(wZEN1@w0v2 zVUT3r&PoRgDkSDFXFc)oXo-|SrIz`JcL`i_)6`vAUh)ouKoVd^IL?l?Rtg+pV~c5e zy@i_L87;8kyLazSjgCPJIAy|re08Hblr^)jP!~@0j-V1qM&@x+bFhHUPC;R0J#$7C z|6-37pDH;T%qk?5?et_l04~d4Jmz9Sk~mAj!-4vurbiTGr=MyeV`>Jw$kqz9L}UkD zaP^#RY&&IZ#MeS!Jh!mmpDuOza#;%=tQN|gWuuzSTMovL$;s2R`73Ienq0qfV#7D74)y}geovlkp0qYN^+2UI ziLUuAWc?tsD#G)l*q9G6AbER+{9imr>FY$h;WJs8cup9asY3W! z?jx4_?my?(t6`a(A(k46)Mk;+$x2ZrNLMTaFD^0Z{mv-5{eorWXJ&Gd6Oih_pT1zx z*k)2QLm;Ql*+RAMtqkTGs5@vzy=n}ul4W^$(qluTc)coG4s-QSqk#njH=$%(ea<l~XnR^fpF^Ize_{7iUq$E3=LujimmHB@|Pp z<9j?vEzV*h83j-G^TSOf=tZKkqtOwhD4TMpWQXw5RBf*{l=MEQGEl=$!x{_C28qY` z_!Nod$>3D&a)N)(fD{FjemOabLK>JOJyOOQF$Qv z*IXJ2{~8Sv^R>Yh`uEbHB*bK8DFX-B#@$Sw`m}+$zmP_>?$Gly@1fm}G$mj1=F$AT zwiN}f*BX%h#E=S5G^QU@eWEKjiCCq?2K1ciNYN!pObY8tx$=(>)E)1|pNnVm?f-U_ z=eOv-t^!Z<=>G9R>mpbqwPgA7pVl#Fow|kwzZK^mA0>u=YwZWb-2&<-z#1*p7MB;8Q z3Oo2uf`=P`<@=q|c?K;70zkZauKfV1NnXDEq={budMhMYa)7P;(-%3-I6F} zZlGbR6J7aJiDyM})&**;;f7qWJa+w0$Y=s~VZA#Ia|6Qnuq39#{kx3TpFDZ8E}tMI zYmog@q0CF)%6G3SxG71>PotcxDa|DNK;%v)8MW|{1nlKeSw$$5v06wT!k~@mjIF7I zFG{wH)W*MhoGFw2^k6v1yKcE3uRS(bd9RYXx^bFN#`647`GqFLgiD&(UvV$Mom`dI zD#kBZIBq0~JwNmN5g-BCddXU-oUH8$z^Wi8cW^+yT?N1QcQS!L`$)K>E!yf!XgJ>l zj(VM*o{ogN5Bb6F_Z`qXtdUf(d5xIiAmb$gm!s6%7 zO?}xZ%ZhOUDH<@ck>Z4oj+xCWN>u|@p}_v=fozc7=9|!9F+4#t+Kn*4oWaJo&X^b+ z8p3eks3d7$fW-S#bvq@%=fBg$e+^Pdl$!!|8A3jo)IVSUCFF?syW->p{~t1q{|$xt zOR@fE-u15s{7=}?f5|Nq|B)R0zqx1f_WrAG`CkpF@q zqnjq(XaX625U51#c>(gpXdrMIXpm@H|E+to?IY5(+jg|GPvvVGh?cMYiq;n5^2ax4S z^A4)%fddCdId_{1;r_*T>gnk%B}vf!NyfrDZQy&U!(Ynx-Z9wFurbq=t( z7MebWjuE6OK~a(HsG#G}I`NaQ>-8022Z1+$tc$>;`tUE21MKYJ)g62Oq80?CR;DUv zPhTIqkdO*=eZV?C9s6cOz6 zAUVwXJ#pH?5CkK1anW(4IaP{W9_Y-xxB)eXkyOvgi+(3u-?erF_-`$ern&suG z|I>Xp)6g8<_M3t+H+V}TIrRo|!xo8=_d-prpsO1Nbr4g!Zc9QCd#G^jS_rHXhmRgL z02@)xcg{`7ol%BjJ`=b4d`d9pv!px%WR6KP>AKp*#N;fquyNzYt9U9na6*TN4N3C_ zL;-Tbh{0WWM@NTs3{$^=z{^!)M@f&8f|643>t0?J?<6H`@Pfjjj-^V z)vHO}AIoEasUCx%C99^%h7_AIb*Gso9qhFdrcm&^Si$53T_?z_<@@)`m|N(A-h8j9 zXdv*5RxL*9$4;L7eNg@xGpT%%AP@39Ts7yFRLxwmP8ALWG}|Yho(d3wp~!>3M1awh zzdhyNmeW5)PISatfT>JvsQc-b$K6F)Pn@W3z550YZ3>`XANGn-&Y}_Mlq7!ylgP~8 zbsd)y`9pN?1TMjUBDF4%!*%1IQRL(vQH<}y45B0<@d%eG3ko95A#ri9%C)b{%fCVd zM?T(pl+1*WH*AN7jln8`7Ut)N5`C~j7;*yS&g7h%!}t_4%hKZFOHfF%x}FI^|8}vC zV&IUJlB#`wf$&HHY%luqB?`tCqbve|8x#|wFLqyXw#^|CB7E}{oiD?dqo22WLUpYw ziBn0hXg$m$r=k)ITgPh`r5fCbpnL|qB!(8``oZ)zGAdWKiqy`r%)ryj;V=xa!w-V# z2do)&a6nl>i5mFINSMgOvhY()KT@0S>rJBn_JlgcTM* z2>S9G8eA{|AzM!**NX2Ivc5v9Z_?6)0yrk=8USu)Wo3tpp8}5i z?xk6#sy7QWmv|%9aWj>Dc0JC5Zy4*MBBWXeG&Tf#nXa4K*Y>@C=5D2=lG?RrEb7bw z-q0x*MzduRT+&RX-@aYFc+qXg&Yht7cikL(Yy880|28KbjozH!dvYSvZ=c=?vqQN* z!Eb;qvY#J_v>MBu9fba4GBb_I0RLOrb)Q&X0nbSKWCcG2d@dKA4E zahm@Ig%({(ImE57byC?-LnR>fu^F9GnF<3xHc8u~R-8jy0#x`kYv^5sa zuxQy}k$KSTpT@;&em-7#Oc6Uu^o$MFX^G|~Eoai+7FSlZ6=d9vyTa4r9-b1C=O}$AU$lDIE00`nEWi@MYVJ+HYttjINi5S0l6U; z9$kB6CcDp)`jj2oZag#(eR$R$&h@_{wHvRgh4vM7vJxSmTh%t364yvQQagjRt%gha z>cfR6JufX7C__FMN&d+3Ego}eP$|DgV`W~6U*2h8KNX^Ja9o6yd9nmPd9i z`>FmA3>Lq&x93+26mpX#9(@K4>lh5&{69?}z#brx*s%2-ssp=XTov$2U8HRAmdzFr zH_4$b**?MONMJ%%dG$VzFA#~Lxz@rILRx~2h2^!hv`AWvG1mZu()x#+h@H(n0=`-B z(i;6pI!jMaPn(*a3XvNEo8{cNCR%|EsU}@G&1rffaOL+ypwJ!oZTsIPM}-rP-q9h) zyvQm8>@eBcO-+*$GJ6@8x|mnI3Oh}0>;k`o(nd6@J4k!;Kz>Cl7=i#|G(+tR#s?z= zAs8MO_Qv=6GAWv9YxiD=r!P;waeTh1(m5j2qR(&E38vwA<5T9{5|T9lDpL(ACaF?t zk(F&uovyT&pwJTYHZ9MeeKAfqz;KoXdl>ce=-07AuuYWAU=N(PcZb0cy_xjV&0u5# z4}d;Ujd4`Yhb^ZGcV}#L)^vjkX*EWFA6#A-6OC;ga7;I#K~L-X?nBOA&!0cC)ESY3tHaQY?;k&U#c+Vs$!6JR(lBu=IwnjvbL$$!*mHP_rWVn5};&6W5%ZT z+$sxhbm5i7NwOed#zNj>?jNGpU&pY%>v7`H%t#A4c^Drb=L>%9bfmhv8iu=i>~b0V zsb&w19LO=HL1L~Vq&||Y8fTC2k=vuA%-Fh9L&=f~K-A^ppqiX^NXp8aSAK_gD`jQB zpMhgP$oAJJ8(*`AfUVhVA8DfJs?>d$WtDQ5e&w#pBS=(XL2k zx7DV70A-ehjTkn;=ODBW^%};6>)sfnhe6&8toP^eFK>tnENov{o}FRa-q#6`&1*6S zHL(5zoF0mR2`qmV6F4&c8{}ZNMWjdx?mjY$0|lft;?LXyF_zyRQJj4>*m*wMdiX~O zK3iL7B#i|gJyOv^**Eo*rx0 zKwjw1*!E?sIgmb5tSEdR=CEyA$G=CCfJ{U}64b-y_thQE7B*~2lO|RsMOQ+zvadW>C?H9%>~Zqv;l)AZxDs1d5xNR;A*+>FP#blsWOf8ka56F>LHT) z8?Io#j-5Dht)!&HTW0C=&3~U1DpP5bG5^0F6Q1B2Aq-0(C1EURg}G0wjckr0p%o5@p<)r_-|xI{)Aoh zWC#Zrg9+G^{?x@Sw4B39ov$<{vbRbR8XQYno+-MyQx$>(_4PHs%jM3#%_i6lg#cGb zQUuLQmNcW1@_VaV4SnX|-tVmwsd7q-3IoBp;fG>r2dciOzsmZR_OZh92fc7zP9>Z!#f@_!tNTWNfIay1dsX|V8#LHK%81iV5n1ghbWZ4j7 z3AkO-8IF6EH#0NySoqT)`W(h)PD#>N@V=_5Dmg(DLmO@4Gs;+eeG}{GnSA~Xuf!%) zP!8A?&pufHc9yjFoKd$h$!i^$YI=gtkAFr@L&LB02d$($NOz{@b>{>HtY!K-j<^q5$_tjO0*BN!Jg+aJ+KrcaFZOEvMb{NDx{q zx*USp0|}}TJ2*8%8Y?gvB3aMW)YOsUGwmbIwGHtqKPm}cBnN>XkfkM}udp{PGSUFzHtDj5 zA099^5eA(=0kd=P+QU;~o*Zv@X4tUWIc@GBARh)^5NZHY> zp;zz(zdfZB0}~!lINCJOZ+!uAZ%r!fI!iO@`9>e(Bl8ma1<; z92~JeRtd=WCIj~^muJkP#>+Ljqc4j^7dvT4I|Nu0C!)b&#;_Gu7SbgRI`~p*4bE3s zBBBhyR7i!Nz`ZY9R)L%=Hbm=9Xwc*np@i;2m^j$(MaTkZM+8BX4Lw`_nk!|>qQw{bf=-sA>BIALVMl}sQ$MWUPvskjlFPFY<81sE?==F>? zE4wD`1I_?IPSAt(xEXjfyY%#-$WX;g`N}cF9I*-kX)4d2?4ak29E|y{V6Gc%p0^@L zufcguO(8Q|DtCWNx=AC*%5Hl4XmrC^pwC_{^cB(*3*<<4Cj}x_F*EThzXMi=$D;R2 z?qr1!Fk}|~Aie7(?MA^OXH;<9;_hWJ(Yg$!M&DYLoIjMc^fh}_fZM^2PaYA13gNe} zc6-GbHD|X$FKo6rMumRZo%d|+tT;?=b`Frgb@qy4y3^`3+v*)gO)&C-t9~fgKfUA- z7m}YD9E@G54fab78rcvzVuW$ucW?>JD|@;uoJ(KvsG2(h&RGZUYw(^Fc5i5C7{q|c z$8yl&R!6}-Z<%uIY~;xFb7E24o1r`}&ugR^Vc?203Q^$QsO2f8C&0#``1Yl_Gy)zG zUl~p0QRT>?s) zod6>|dNpB+;x1{w2V;puzq7?)U5Wf{w&G(slh2T;oEChQ;EN=<;$b{k7AVx1)187Q zMt%^klWI92NA6y)2+2p%bN(2V1clZ#JdnG1k0---SG&}c$6oX2FZ)jW++PfHDh`uP zm*U+QwN4)=a)Rs!kCA;EfWVJO&s#BGnSdj1Dpq6ZvSMs%lhm_B9KkSZPAOTe-A+4y zT5a@MqWr78OV6I%wxSm}m-gn~=0T=VFZHE*UgNNUR9-fj_E4mOO!)M^FPV8F0DQhI zt;EXGN9B0wnLbQlikTd)cu&lW_@|W#Nfuxn(mAfzwOmCxBWW!a`ud4AR$dvI8}>&A1p7w`wFic~VX~K;T137i^ZwndaebIFxmf`H21R zAwN`d^aG2m+fl*~-P~fJBQ`ZP8Rd=Pq?BY0CSra|NlBd#_;H$p9J@OM8&{iQdgH}H z)9f@bId{i!=&mbGz3oBVuYaFgrx=?%on@sQn5I8skZN74 zu96}c-qyI0-(?7i*V%yZaN1B^cwo$&B0L%*QPDJ!u=?fH$L9kbcB!%dJ6fFFWc~vZsV_C zw(Vyfm(V{YQVVG;vi_2&O2l#h9H-}^+ zjO!onmhORfi^)85uZGjK4>xs@Dl`^1)Va7%D@%)urqJ=%u3ak@a`hH~jf9lc&Wk;R z%env`3!ZsFh)pW`lWS?Y)V}}^mcthJjo58{BTXo$s3+#`SXQm`&e!Org3x-Eg&;(2jlB6 z+H;?M<`_%QQ0-ZAV9htfGvxj((}}pazGUf4w^G}MKI0H+u318V%gRYx4ML^#$IKsS zP!nWgXB&;kCxc&HA4@9-Yd&XhZy)NECc*L0FB}`&f~{-jSls`=3Qqn+TQXz z=;mc8B+2btd@j2J?Py_Q|M_tj>0xkGqMC-C<`6IMZu~?7xpVicE9(^@ba-73KTEokRTmwD7o@)Y|v5ypY)MTiS_eYUnewvVyEm&9Y+? z6xQ;2Rb|{Rov=L*j*aS7&9*cUEei39;s;+8R8%C?pZ?JDy{U;F0PNd!lda8@E}(4) zG%7OPVAErvVtvb_x1*+}=HZqQ<+Ps(2$HL;yQtN#J6M>TpSyXJJ|JN>BF}oH`N-st0U4a!(pLyQx}uCDj${f;N^XMVpp1dCk(#;)7}(!22Pcqh zXIpJP*iPIA+UWvgef0F{T1sxCm#?ooB-M-QW)QM#M=f{0(%&w#SpU03AB*zjuv`>T zZyj|_h&S6XRes&w7l&fbk6iD6e++c^z@3xyXgNljS;wxf&l?@#howQKjXe#`x6X$eh;7>HJ2^VtkC>D4CpIlAVf>tb2G2(#1Fc2xJyzCL$& z4l7<|8z#4*6&zv4L1@}hQ32w~d7G5D=rso#n)40l7lLj+xpJfs&K2YF-vIoDAlIJu z2_|`e*26Bv-feywi*GtRsup@t8G5etM!w2Gq4erX7rufmb&-#f?zp7mEdgO?amsK5 z>#ohQ>;;YT%=TShsVQQZ3%hF53v){zCrKfmvWf$~znD=9C(ps2WK52xxQ z$N_`pE-5|M@$vCSv$veI%3AXvTAYU&Wuii8tfMcOaKlNU%}=s2Gdtl{qt=#fGS4Qw zr;`@bJsusGQ8}B9$pA-h&_YZ5vi7)jXef4;G~0e&dL7~Qr090e+%FHxVB|Hw$%lIL zQv)0_>GkD$wu5!YI+vk!JzPL|+(z zVh^Lpi1+)@W6j&|f6dYHycS!(&7)|~rYpP=;Ue-2xdxnsZj_pOdOo+cutiPUU8(%H zM&Z@E`*%EUj`wVLnpF!BFk6kI;Ab%eJ3I8lK08fGh3{f$^_wN3IN?ig5R}Mjv(C@! zSbZ)>$+LC$^mM{RebL!j1pRh;vuCq;b~EfnVZzLJMrSyV9sBfbpAe;vcy{RE!G~k< z@@z$1ME+vUJKH#pboQGx&pHm)OUcWBCtmq6EI~J70gZ~`m6BBY zqw^qAO%a9EblmTX?pg*5!S|BUj#qAw6u}n%54p<9jrRqVy*aT4IGgU2HWfho#1F0K z2UuCZ9bZ`9uXO3K;?w-*U*;c`JBXI{R~hC?o_Plpw()OoXN|3ScP`@7^)=nL`eLQ0 zOJsij{%k|MSx$ZJ<8zkH=W}iCPJl%{%eUYa8*7K+e59T`kK0A`bVw?E(zwbrw<&dZ z_&AlmAh&|r8ycmfN7o9!y4`FADOT^Z&*o8k8|TVAxg zbLY-}H~~%8=7t=(^2R0Apz#-u^3TB-%!5iT?QA8`?yeP0d*F|&Sn_=n5<%Ytv zXQq$8b<48>8Pt2ddwk&fXG+SA5k>#nn9KndX`{-3LpfB(zK5us$OUL0`!G;TM0R16 zYm4c$EAudf?GE(LFBxWC+xG5#ieq1fO&^Pfm6D1M?$1chDN-4uoOV0Uy1h!0TGD5S zIw!SB#mwbb3ei=y8lDeXUC*|R{L&6uV{TN`^!hhLnogUz)}wuD9sP_yf5ltKA3x(T z<$CeB+qr97g!n7h^ZQ&}6aIb=!SpG&^Ava6yOAeqKg)k-U8xq)Pi4?>oLC3uoaDS@ z|K-b<4(ND4@(Ixg*@9Ff&ly97Ru6w#ZRj=+KdI}Mn;W+7-L`BJza&(ZHe2R*T0r0( zlt}>$RK^)eOdsm3bN=9Va0u7-B)nZERllwh&VN^DK&1VL53eJjn0mIQd{U##4JTJB z=O#w%prhN!#g(`|f8Z;cYgBx^D@++B=JRQa1`Ah>dZv5T^R4GIjN6Td?R&esy4LXX z^Cx#V)WJeZ&Cj2{M<*{;;qKkTK~6I_$@k_+=-p;jF;RLUv6h*c8Hg`s;hT80{AML3 zr3Xau(-3K5Q_8JR_b;yTw6?Z>BMKM)##A{Wi@#?GshMt z2cy7AFL+0MIlmSbt^v)ExN_wSo`^(-ohSZ6PO9-8!rhjaPD-+P@9{Mm9lT|rd+7|F z{mF3Qn`@uu&+C4xlM3JA<<*m#mJd8sJXRK`9W-by1T91=#(hTqZ zN=uV9GU9;b!Hqfe+6@~H2?;ThCks->56~wfv(AP00beohrfSNuI|bzL4!kz7#COAB zWtrR5#-)b)*d^7-fz{eOM=F#||@-zMg?{qUtrmole)xxnJVp&j7Isf_yJRt@dE*8_=Q3Y;?=?p{IlAi{9Zi_cHra&fDW0g&zx>W- zBm?BO)h^lw7s&GoYbnD&Gq2AD|Lqs+Z67n4!>}Mw(pY}9W!LpUM`$a|VoSTt#S?z% zvp-zTZJ%-;4k(XO-N-%smuB}%IhZ!k;UyyHFI><>2mg^~#7F>XR0Ikgl|S8@X>oLU zL8Dgo1;3jwqZeO_h|AE(*6!8~6+hQj^sVyYEjV;m?40O+vsA^$^0W5dEbf9 zCLRVh+;Z#{jH_Is>7nv$W(zY$2rez?kVk%s7t#?e?jj)jl>KXuFoE!yqLNeQqvM{c zRR+Kbyp4|T5k{lQ;d(f&dp|Le>)@e7EgX*$6=Tt48GfeV!**?URj-c1PGcnB|1;Af zdu9TAw&U?y^vM$j-{0XaHLEG;mUZ1Hn^!Bt>bhrHr*tGHm!kEgX~)+ZLYD{l*agGT zk`^U?E*lHlpwwg?t4p(h4uI!C=iC^ZQVJk_tL!Z@h;a!s?hM>{RE8%z?qcZn&1oQe z{hl(mrkTBTC#mf)GUMP(#%bfuJY&sNq>C0B%jf6)4^RTvZ{7O{#+7va;AW{tnS#3W zw|>18lOrshxNW*a#lCyZuZS+O-ZEL2&oDDH^X81*Ny^4UWlVL=dQZ~|*i&fiBlFxw z4+UN7=nCCF{-eFh=o{<9BTp}ly`t~0i5z(EHWJM-V$o5sYA=!i^L5Ny*I2l|ZF+U= z`oq~doM|wu-(-n7zUlov@N4mxS1T{fy1R~+5#DLt3A;Rs&TUtGmuIUhL;l$}V>D4Fk`& z)F!sP{NSYP=y+y$csR+Tuj1muJ#c7hP=iOFp7l}_w@|uS_IPaHx$^;mbi^CP{2dp- z9c)H_p1pPJR&vop>2QeUOb~aV;1C&@WE7qgKsh-Cui^I z=x9GC0VPB&-{bQKJ9CsBK1`lPQsA8M>hYD}RRw7+K5_2517dc*2p>?)AQ`K_s!X)} z?N9gD9kHwU^5uNza*o}k-xBDyL;BTQ7*w35W@>yEB;Yh}`LYF_>jrR|$AT5eN3N*X5!|tWjrL^^{@l z+M7)i1wc&)_IP{%Ls;0;rPV(bKt7~H}c#dBVT-WT>>DQ_#<=e)-4;P62Hq1(f; z8)f~dR?coRol3eAR2)IqBGUZ%3eGf%UR6``1b8`Ol6CaMoxL6O>nb?mX{{oWyA~^Ut zrgmS7iZ(q5?aIo?AeEiAHlppKn#3trG!ydVlM&Allnx4Ivahn3Jd{zf$>Yfrbo*zJ zau32KnyCB!-zxt`9J)H^It-n3$n!_FT(tZfL93XyPYNolb-;+uS&g02skjA6=CkE) zHE_?J=5(ipgtQ_SPWiT~0ElAO;?da})h_}%R z2nih$7TyPvD}MFrHVRH>)`>hd3MK_Q3M?!eWo0Y1O`6~BOfAQoAWje%1yQDx1C6!5M`j3R}?2 zQoP1x^Py;Qaq;a;OvY6+7Y=UMt_Y^{rmoFPlbrkzK~@euZ-kgTIr-b(WF9Z=wt zl9P!-uLI)azdX43{DSj^Q^IMSKubtn6C?nvKoe6#I__JPg9i^@y?OI7`9g#672P2q zzrn#LDDCf24j`+XXqqK8LFh&Ot=Z|^xoyo>53M~tJjCJcF&k?WP7ZIaf@|5u!(+?* z%n19g#FLSSrC#3xMI!{veyxT7Z>y}VtgVB?AqWKU4Kk9&8oh!~pby2v>DS|0I!mfmB1 zc&LEFwf!v14o$d`&S?hVg;IwO99ZQ~@ELtZ5{+Xv{SF6if28Q`+{2;F64%&J(1i1~ z`@55%b8ujHCh!gcP59iv)xKb&;Et*HrlU$Yfl|e|6oYj+-sy~ji{E_+J--WwGw_4w zk%lB~LBgg9sC~c)$*bf}e`6vuRFouG)Ns&?-~x}|iYI%>GL5!ji_<1k4H(XTOd_Da zh~opv4?e)oz6Ebcxshpp7#8fqPm?6CTse;c$%`>2IQ;geo3ww0X0sI#`)9Td4JOk? z;DX$+JHLAMiV`JS9Xiw4JcC&3j8fgQ?eY0J9NY8?2%viBJV@MzunTXSr|UiU?{Pf&j2=vMlZVI{W$cxT3p!X3_zftY{&GucP7&sg^H-jNZGpC$?Y zPeRB}gU{XLTbnCz1~P}DaB-OA%ZCf(X|Ch*K^HGw(t<_mk%z|vD5f&OBA#dyU69ZT zFA0{YxVZBW?=bT=n;E{Tn(w?1FYpt)efuE!ssj({dqxJ#F-CoGt{)N+VIt*8=nEtR zhVBr;>J{B^Djg#Hm#<$@A-45Z2Af!TDII*#(VS}V=*g4M;BsZ^s^#*6=d$e)U)Xa1 zl?=x}ADiyqhqOq*<=bB$ON+^E^WF7tW}GU%fB%en6(SdnI_ZuOzl}^5z-Tx$+QTqY z4To*2a5y|8J3GBJ%22H_QRC8$8*~^kXg93dkM}5@H#0k-73%Hu2BYF5auAu(oPm8_e<M4f_fqCUO8v}--FS=KIc@DDFsTw# z5tbqnV1#EYzs?(|q4;4~^$8GI^XmRPP`Pg8*qSAuRWRspPrWh`bj;^6-h0H?-+uQb zJxHP7&xjK|44z*34eq!%{+} z0y^hy|I9yrkmSpo``&Z!Ip^LMecw1^2*8*bX}J~Kww1ST3ucK`}Kuj z%2g^=*R5m8nNvd!s5bAxJQTnSuPG&p1C9oLw;ME0b6eZ~3CWdns+OEpB*1Xxfg-Vs z4|UIkzvYwGmj?@#ZeHZ|J{}GAAY)SHCq8i^0X7pBHXnvH?tKMQ8W9A30Ypqd5aD!m zTs%B{msv~|z#60qVM-xZrc8i7!42MFJw z-{fNP6Uofr3eIoI@o_x<#DXzbD@6p5f$fRx7aGkBNGAboJpfH>5a$w1P5{t}5Jwbc zdGI^rMbOj)NWb&A5*e?weU;QqBuMuHKu+Jy)Kw63OK}|A z>tkG8UG*_6%YyY_rgPJSi4sfU$(wUi!ld-{vOxOHq7^D+>yyQEU@N>tDNHnmdVkT^ zad$tpg(=$+dq*CRYe>x)xH$cpx%g4m?D%e{rUm$<6dp~+O8Pa~m(p1sxQ6kk5Cm(L zaOjzWP`MaeA!!&C*BB~#a40bYnP1YhFKd1*)iOIBnl6JV8m~O5Dk6l*PFq} za-mU~toG^D&x!bHW_Ff51wn80iUQa&Kdh8Q$HWxg{&-3-Jwkscf{THrl9`?gb)g)@ z?jh55V>t34_FY7OR?$kmW)~3@&9vF&*)$wIN9O+dG-T3e95!sLuktRm^~;kj92}US zYtjart>GU76F}HHOhJ;m4U7S)4mq5z#0NjeK&)qBg~lV9GikkX`y&+emV?4I&dzF) zw;gj&)#hS=zB2+6rW+VRiD-Z&kUHzvuSc^Dj#;TxVk<2%-~z>f@7og-U9nTy^GWIY z`|fOZJFL2=Q1@+PSGXW!?v{_jnVm7G-j9o*2j^oj%-8)7mm;^6gnWik0ejyJ1`XE$ zxnT!}a&WmI;A=r4AU*YX{$qFjj}~_xmz3;KZvW=3)*J{pix1u`nlVNoqwfG)aUm`n z>;}q4gS=PNoQ5lFSNXr6_b!qu+(1EG--O0XKgn&atP+%GLdfv!sH}p&@wop<2%Tg2 zGeyfq2S6t#B^`L`{U0O*0l>b*rgEba{6AU(C(B~Hh~RW)`A#uLt^}x+Legv96$4u- zO34KfjN-=!E}0cOCe5+w~h&r$nbEV}{ zX)!|H$;-=Zu$j(6l^Xf=z|M7FjDl2x+$VZc9*PpU41$E>SU|MfN+P65ygjg8cwK#E z6ptr{QGqZh*jgfj4SKgibHZBh{|@Tee;vRu=zVlPdhdH+0#V$R!i5Uu(GmsLJHNZv zhld(Zf7ym^to-a*dRfiZ$g3O9B?=)C5=I!+6Xd|PZf=GMCcq+RS8hTo7wcAFyM;(- ziouZU+DY$U50S8G;G=7$m*!T%ju9CbX966N?K1-WWvZ1%m~t>g+gV+`=3#oQyKG-E z&Y1AyOf^D<`<6V5ovPOje%cOC-TwE zV(jE};Olukg7|o>3(>=XSQXf>eRV4_tQ4G*;sH5T(AJVG; zBZ?Vn;{lQ&Fhl_X2B++M^ob#eA7^^yC*9+B)rPDQVMmPa9W&2^M$=eTXCd7MnX%N~ zuK=r?E(3!gn-ZQR_U*#jT9@wyTre-#N_z;YU{9t0cfGx<0CFPK$sDM${0xOII2g1y zeez_p!>Xoya5!SIxV5*paeqD^CxN>^1`~pzi3v@i(cr*MJi57Tpj3zdyxlpK(r5HF zBpFwI`diq=t$()z$J)`+@lmGVjo8z$=478AVOv;49qg2Dy87?o&d2bE1Rymx6S|YhZAx!z8wY#68sH3oo!ChTw=&1SSE7`HJy6o(GzWR`kk)?X6v*>nw}A z(i1JRI}yV3KD>S{AwA_jgV`ScLlM+9R tidySingleCellExperiment - 1.13.3 + 1.15.1
@@ -70,13 +70,13 @@

Citation

Mangiola S (2024). tidySingleCellExperiment: Brings SingleCellExperiment to the Tidyverse. -R package version 1.13.3, https://github.com/stemangiola/tidySingleCellExperiment. +R package version 1.15.1, https://github.com/stemangiola/tidySingleCellExperiment.

@Manual{,
   title = {tidySingleCellExperiment: Brings SingleCellExperiment to the Tidyverse},
   author = {Stefano Mangiola},
   year = {2024},
-  note = {R package version 1.13.3},
+  note = {R package version 1.15.1},
   url = {https://github.com/stemangiola/tidySingleCellExperiment},
 }
diff --git a/index.html b/index.html index adcb83c..30954ff 100644 --- a/index.html +++ b/index.html @@ -33,7 +33,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1
@@ -209,22 +209,22 @@

Data representation of

It looks like a tibble

 pbmc_small
-
## [90m# A SingleCellExperiment-tibble abstraction: 80 × 17[39m
+
## [90m# A SingleCellExperiment-tibble abstraction: 80 x 17[39m
 ## [90m# [90mFeatures=230 | Cells=80 | Assays=counts, logcounts[0m[39m
 ##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 ##    [3m[90m<chr>[39m[23m [3m[90m<fct>[39m[23m           [3m[90m<dbl>[39m[23m        [3m[90m<int>[39m[23m [3m[90m<fct>[39m[23m           [3m[90m<fct>[39m[23m         [3m[90m<chr>[39m[23m 
-## [90m 1[39m ATGC… SeuratPro…         70           47 0               A             g2    
-## [90m 2[39m CATG… SeuratPro…         85           52 0               A             g1    
-## [90m 3[39m GAAC… SeuratPro…         87           50 1               B             g2    
-## [90m 4[39m TGAC… SeuratPro…        127           56 0               A             g2    
-## [90m 5[39m AGTC… SeuratPro…        173           53 0               A             g2    
-## [90m 6[39m TCTG… SeuratPro…         70           48 0               A             g1    
-## [90m 7[39m TGGT… SeuratPro…         64           36 0               A             g1    
-## [90m 8[39m GCAG… SeuratPro…         72           45 0               A             g1    
-## [90m 9[39m GATA… SeuratPro…         52           36 0               A             g1    
-## [90m10[39m AATG… SeuratPro…        100           41 0               A             g1    
-## [90m# ℹ 70 more rows[39m
-## [90m# ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,[39m
+## [90m 1[39m ATGC~ SeuratPro~         70           47 0               A             g2    
+## [90m 2[39m CATG~ SeuratPro~         85           52 0               A             g1    
+## [90m 3[39m GAAC~ SeuratPro~         87           50 1               B             g2    
+## [90m 4[39m TGAC~ SeuratPro~        127           56 0               A             g2    
+## [90m 5[39m AGTC~ SeuratPro~        173           53 0               A             g2    
+## [90m 6[39m TCTG~ SeuratPro~         70           48 0               A             g1    
+## [90m 7[39m TGGT~ SeuratPro~         64           36 0               A             g1    
+## [90m 8[39m GCAG~ SeuratPro~         72           45 0               A             g1    
+## [90m 9[39m GATA~ SeuratPro~         52           36 0               A             g1    
+## [90m10[39m AATG~ SeuratPro~        100           41 0               A             g1    
+## [90m# i 70 more rows[39m
+## [90m# i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,[39m
 ## [90m#   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,[39m
 ## [90m#   tSNE_2 <dbl>[39m

But it is a SingleCellExperiment object after all

@@ -283,22 +283,22 @@

Annotation polishing# Reorder to have sample column up front pbmc_small_polished |> select(sample, everything())

-
## [90m# A SingleCellExperiment-tibble abstraction: 80 × 18[39m
+
## [90m# A SingleCellExperiment-tibble abstraction: 80 x 18[39m
 ## [90m# [90mFeatures=230 | Cells=80 | Assays=counts, logcounts[0m[39m
 ##    .cell sample orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents
 ##    [3m[90m<chr>[39m[23m [3m[90m<chr>[39m[23m  [3m[90m<fct>[39m[23m           [3m[90m<dbl>[39m[23m        [3m[90m<int>[39m[23m [3m[90m<fct>[39m[23m           [3m[90m<fct>[39m[23m        
-## [90m 1[39m ATGC… sampl… SeuratPro…         70           47 0               A            
-## [90m 2[39m CATG… sampl… SeuratPro…         85           52 0               A            
-## [90m 3[39m GAAC… sampl… SeuratPro…         87           50 1               B            
-## [90m 4[39m TGAC… sampl… SeuratPro…        127           56 0               A            
-## [90m 5[39m AGTC… sampl… SeuratPro…        173           53 0               A            
-## [90m 6[39m TCTG… sampl… SeuratPro…         70           48 0               A            
-## [90m 7[39m TGGT… sampl… SeuratPro…         64           36 0               A            
-## [90m 8[39m GCAG… sampl… SeuratPro…         72           45 0               A            
-## [90m 9[39m GATA… sampl… SeuratPro…         52           36 0               A            
-## [90m10[39m AATG… sampl… SeuratPro…        100           41 0               A            
-## [90m# ℹ 70 more rows[39m
-## [90m# ℹ 11 more variables: groups <chr>, RNA_snn_res.1 <fct>, file <chr>,[39m
+## [90m 1[39m ATGC~ sampl~ SeuratPro~         70           47 0               A            
+## [90m 2[39m CATG~ sampl~ SeuratPro~         85           52 0               A            
+## [90m 3[39m GAAC~ sampl~ SeuratPro~         87           50 1               B            
+## [90m 4[39m TGAC~ sampl~ SeuratPro~        127           56 0               A            
+## [90m 5[39m AGTC~ sampl~ SeuratPro~        173           53 0               A            
+## [90m 6[39m TCTG~ sampl~ SeuratPro~         70           48 0               A            
+## [90m 7[39m TGGT~ sampl~ SeuratPro~         64           36 0               A            
+## [90m 8[39m GCAG~ sampl~ SeuratPro~         72           45 0               A            
+## [90m 9[39m GATA~ sampl~ SeuratPro~         52           36 0               A            
+## [90m10[39m AATG~ sampl~ SeuratPro~        100           41 0               A            
+## [90m# i 70 more rows[39m
+## [90m# i 11 more variables: groups <chr>, RNA_snn_res.1 <fct>, file <chr>,[39m
 ## [90m#   ident <fct>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>,[39m
 ## [90m#   tSNE_1 <dbl>, tSNE_2 <dbl>[39m
@@ -330,7 +330,7 @@

Preliminary plots) )

## Warning: [1m[22mThe `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
-## [36mℹ[39m Please use the `linewidth` argument instead.
+## [36mi[39m Please use the `linewidth` argument instead.
 ## [90mThis warning is displayed once every 8 hours.[39m
 ## [90mCall `lifecycle::last_lifecycle_warnings()` to see where this warning was[39m
 ## [90mgenerated.[39m
@@ -383,25 +383,29 @@

Preprocess the dataset ## Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth = ## TRUE, : You're computing too large a percentage of total singular values, use a -## standard svd instead.

+## standard svd instead. + +## Warning in (function (A, nv = 5, nu = nv, maxit = 1000, work = nv + 7, reorth = +## TRUE, : did not converge--results might be invalid!; try increasing work or +## maxit

 pbmc_small_pca
-
## [90m# A SingleCellExperiment-tibble abstraction: 80 × 18[39m
+
## [90m# A SingleCellExperiment-tibble abstraction: 80 x 18[39m
 ## [90m# [90mFeatures=230 | Cells=80 | Assays=counts, logcounts[0m[39m
 ##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 ##    [3m[90m<chr>[39m[23m [3m[90m<fct>[39m[23m           [3m[90m<dbl>[39m[23m        [3m[90m<int>[39m[23m [3m[90m<fct>[39m[23m           [3m[90m<fct>[39m[23m         [3m[90m<chr>[39m[23m 
-## [90m 1[39m ATGC… SeuratPro…         70           47 0               A             g2    
-## [90m 2[39m CATG… SeuratPro…         85           52 0               A             g1    
-## [90m 3[39m GAAC… SeuratPro…         87           50 1               B             g2    
-## [90m 4[39m TGAC… SeuratPro…        127           56 0               A             g2    
-## [90m 5[39m AGTC… SeuratPro…        173           53 0               A             g2    
-## [90m 6[39m TCTG… SeuratPro…         70           48 0               A             g1    
-## [90m 7[39m TGGT… SeuratPro…         64           36 0               A             g1    
-## [90m 8[39m GCAG… SeuratPro…         72           45 0               A             g1    
-## [90m 9[39m GATA… SeuratPro…         52           36 0               A             g1    
-## [90m10[39m AATG… SeuratPro…        100           41 0               A             g1    
-## [90m# ℹ 70 more rows[39m
-## [90m# ℹ 11 more variables: RNA_snn_res.1 <fct>, file <chr>, sample <chr>,[39m
+## [90m 1[39m ATGC~ SeuratPro~         70           47 0               A             g2    
+## [90m 2[39m CATG~ SeuratPro~         85           52 0               A             g1    
+## [90m 3[39m GAAC~ SeuratPro~         87           50 1               B             g2    
+## [90m 4[39m TGAC~ SeuratPro~        127           56 0               A             g2    
+## [90m 5[39m AGTC~ SeuratPro~        173           53 0               A             g2    
+## [90m 6[39m TCTG~ SeuratPro~         70           48 0               A             g1    
+## [90m 7[39m TGGT~ SeuratPro~         64           36 0               A             g1    
+## [90m 8[39m GCAG~ SeuratPro~         72           45 0               A             g1    
+## [90m 9[39m GATA~ SeuratPro~         52           36 0               A             g1    
+## [90m10[39m AATG~ SeuratPro~        100           41 0               A             g1    
+## [90m# i 70 more rows[39m
+## [90m# i 11 more variables: RNA_snn_res.1 <fct>, file <chr>, sample <chr>,[39m
 ## [90m#   ident <fct>, PC1 <dbl>, PC2 <dbl>, PC3 <dbl>, PC4 <dbl>, PC5 <dbl>,[39m
 ## [90m#   tSNE_1 <dbl>, tSNE_2 <dbl>[39m

If a tidyverse-compatible package is not included in the tidySingleCellExperiment collection, we can use as_tibble to permanently convert tidySingleCellExperiment into a tibble.

@@ -436,22 +440,22 @@

Identify clusters
 # Reorder columns
 pbmc_small_cluster |> select(label, everything())

-
## [90m# A SingleCellExperiment-tibble abstraction: 80 × 19[39m
+
## [90m# A SingleCellExperiment-tibble abstraction: 80 x 19[39m
 ## [90m# [90mFeatures=230 | Cells=80 | Assays=counts, logcounts[0m[39m
 ##    .cell  label orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents
 ##    [3m[90m<chr>[39m[23m  [3m[90m<fct>[39m[23m [3m[90m<fct>[39m[23m           [3m[90m<dbl>[39m[23m        [3m[90m<int>[39m[23m [3m[90m<fct>[39m[23m           [3m[90m<fct>[39m[23m        
-## [90m 1[39m ATGCC… 2     SeuratPro…         70           47 0               A            
-## [90m 2[39m CATGG… 2     SeuratPro…         85           52 0               A            
-## [90m 3[39m GAACC… 2     SeuratPro…         87           50 1               B            
-## [90m 4[39m TGACT… 1     SeuratPro…        127           56 0               A            
-## [90m 5[39m AGTCA… 2     SeuratPro…        173           53 0               A            
-## [90m 6[39m TCTGA… 2     SeuratPro…         70           48 0               A            
-## [90m 7[39m TGGTA… 1     SeuratPro…         64           36 0               A            
-## [90m 8[39m GCAGC… 2     SeuratPro…         72           45 0               A            
-## [90m 9[39m GATAT… 2     SeuratPro…         52           36 0               A            
-## [90m10[39m AATGT… 2     SeuratPro…        100           41 0               A            
-## [90m# ℹ 70 more rows[39m
-## [90m# ℹ 12 more variables: groups <chr>, RNA_snn_res.1 <fct>, file <chr>,[39m
+## [90m 1[39m ATGCC~ 2     SeuratPro~         70           47 0               A            
+## [90m 2[39m CATGG~ 2     SeuratPro~         85           52 0               A            
+## [90m 3[39m GAACC~ 2     SeuratPro~         87           50 1               B            
+## [90m 4[39m TGACT~ 1     SeuratPro~        127           56 0               A            
+## [90m 5[39m AGTCA~ 2     SeuratPro~        173           53 0               A            
+## [90m 6[39m TCTGA~ 2     SeuratPro~         70           48 0               A            
+## [90m 7[39m TGGTA~ 1     SeuratPro~         64           36 0               A            
+## [90m 8[39m GCAGC~ 2     SeuratPro~         72           45 0               A            
+## [90m 9[39m GATAT~ 2     SeuratPro~         52           36 0               A            
+## [90m10[39m AATGT~ 2     SeuratPro~        100           41 0               A            
+## [90m# i 70 more rows[39m
+## [90m# i 12 more variables: groups <chr>, RNA_snn_res.1 <fct>, file <chr>,[39m
 ## [90m#   sample <chr>, ident <fct>, PC1 <dbl>, PC2 <dbl>, PC3 <dbl>, PC4 <dbl>,[39m
 ## [90m#   PC5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>[39m

And interrogate the output as if it was a regular tibble.

@@ -461,7 +465,7 @@

Identify clusterscount(groups, label)

## tidySingleCellExperiment says: A data frame is returned for independent data analysis.
 
-## [90m# A tibble: 8 × 3[39m
+## [90m# A tibble: 8 x 3[39m
 ##   groups label     n
 ##   [3m[90m<chr>[39m[23m  [3m[90m<fct>[39m[23m [3m[90m<int>[39m[23m
 ## [90m1[39m g1     1        12
@@ -494,7 +498,7 @@ 

Identify clusters## tidyHeatmap says: (once per session) from release 1.7.0 the scaling is set to "none" by default. Please use scale = "row", "column" or "both" to apply scaling ## Warning: [1m[22mThe `.scale` argument of `heatmap()` is deprecated as of tidyHeatmap 1.7.0. -## [36mℹ[39m Please use scale (without dot prefix) instead: heatmap(scale = ...) +## [36mi[39m Please use scale (without dot prefix) instead: heatmap(scale = ...) ## [90mThis warning is displayed once every 8 hours.[39m ## [90mCall `lifecycle::last_lifecycle_warnings()` to see where this warning was[39m ## [90mgenerated.[39m

@@ -564,22 +568,22 @@

Cell type prediction## returned with the old-style vocabulary (cell), however, we suggest to update ## your workflow to reflect the new vocabulary (.cell). -## [90m# A SingleCellExperiment-tibble abstraction: 80 × 23[39m +## [90m# A SingleCellExperiment-tibble abstraction: 80 x 23[39m ## [90m# [90mFeatures=230 | Cells=80 | Assays=counts, logcounts[0m[39m ## cell first.labels orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 ## [3m[90m<chr>[39m[23m [3m[90m<chr>[39m[23m [3m[90m<fct>[39m[23m [3m[90m<dbl>[39m[23m [3m[90m<int>[39m[23m [3m[90m<fct>[39m[23m -## [90m 1[39m ATGCCAGAACGA… CD4+ T-cells SeuratPro… 70 47 0 -## [90m 2[39m CATGGCCTGTGC… CD8+ T-cells SeuratPro… 85 52 0 -## [90m 3[39m GAACCTGATGAA… CD8+ T-cells SeuratPro… 87 50 1 -## [90m 4[39m TGACTGGATTCT… CD4+ T-cells SeuratPro… 127 56 0 -## [90m 5[39m AGTCAGACTGCA… CD4+ T-cells SeuratPro… 173 53 0 -## [90m 6[39m TCTGATACACGT… CD4+ T-cells SeuratPro… 70 48 0 -## [90m 7[39m TGGTATCTAAAC… CD4+ T-cells SeuratPro… 64 36 0 -## [90m 8[39m GCAGCTCTGTTT… CD4+ T-cells SeuratPro… 72 45 0 -## [90m 9[39m GATATAACACGC… CD4+ T-cells SeuratPro… 52 36 0 -## [90m10[39m AATGTTGACAGT… CD4+ T-cells SeuratPro… 100 41 0 -## [90m# ℹ 70 more rows[39m -## [90m# ℹ 17 more variables: letter.idents <fct>, groups <chr>, RNA_snn_res.1 <fct>,[39m +## [90m 1[39m ATGCCAGAACGA~ CD4+ T-cells SeuratPro~ 70 47 0 +## [90m 2[39m CATGGCCTGTGC~ CD8+ T-cells SeuratPro~ 85 52 0 +## [90m 3[39m GAACCTGATGAA~ CD8+ T-cells SeuratPro~ 87 50 1 +## [90m 4[39m TGACTGGATTCT~ CD4+ T-cells SeuratPro~ 127 56 0 +## [90m 5[39m AGTCAGACTGCA~ CD4+ T-cells SeuratPro~ 173 53 0 +## [90m 6[39m TCTGATACACGT~ CD4+ T-cells SeuratPro~ 70 48 0 +## [90m 7[39m TGGTATCTAAAC~ CD4+ T-cells SeuratPro~ 64 36 0 +## [90m 8[39m GCAGCTCTGTTT~ CD4+ T-cells SeuratPro~ 72 45 0 +## [90m 9[39m GATATAACACGC~ CD4+ T-cells SeuratPro~ 52 36 0 +## [90m10[39m AATGTTGACAGT~ CD4+ T-cells SeuratPro~ 100 41 0 +## [90m# i 70 more rows[39m +## [90m# i 17 more variables: letter.idents <fct>, groups <chr>, RNA_snn_res.1 <fct>,[39m ## [90m# file <chr>, sample <chr>, ident <fct>, label <fct>, PC1 <dbl>, PC2 <dbl>,[39m ## [90m# PC3 <dbl>, PC4 <dbl>, PC5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>, UMAP1 <dbl>,[39m ## [90m# UMAP2 <dbl>, UMAP3 <dbl>[39m

@@ -590,7 +594,7 @@

Cell type predictioncount(label, first.labels)

## tidySingleCellExperiment says: A data frame is returned for independent data analysis.
 
-## [90m# A tibble: 11 × 3[39m
+## [90m# A tibble: 11 x 3[39m
 ##    label first.labels     n
 ##    [3m[90m<fct>[39m[23m [3m[90m<chr>[39m[23m        [3m[90m<int>[39m[23m
 ## [90m 1[39m 1     CD4+ T-cells     2
@@ -655,13 +659,13 @@ 

Nested analyses nest(data=-cell_class)

## Warning: [1m[22mThere were 2 warnings in `mutate()`.
 ## The first warning was:
-## [1m[22m[36mℹ[39m In argument: `data = map(...)`.
+## [1m[22m[36mi[39m In argument: `data = map(...)`.
 ## Caused by warning in `is_sample_feature_deprecated_used()`:
 ## [33m![39m tidySingleCellExperiment says: from version 1.3.1, the special columns including cell id (colnames(se)) has changed to ".cell". This dataset is returned with the old-style vocabulary (cell), however, we suggest to update your workflow to reflect the new vocabulary (.cell).
-## [1m[22m[36mℹ[39m Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
+## [1m[22m[36mi[39m Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
 pbmc_small_nested
-
## [90m# A tibble: 2 × 2[39m
+
## [90m# A tibble: 2 x 2[39m
 ##   cell_class data           
 ##   [3m[90m<chr>[39m[23m      [3m[90m<list>[39m[23m         
 ## [90m1[39m lymphoid   [90m<SnglCllE[,40]>[39m
@@ -691,7 +695,7 @@ 

Nested analyses )) pbmc_small_nested_reanalysed

-
## [90m# A tibble: 2 × 2[39m
+
## [90m# A tibble: 2 x 2[39m
 ##   cell_class data           
 ##   [3m[90m<chr>[39m[23m      [3m[90m<list>[39m[23m         
 ## [90m1[39m lymphoid   [90m<SnglCllE[,40]>[39m
@@ -747,21 +751,21 @@ 

Nested analyses
 data(pbmc_small_nested_interactions)
 pbmc_small_nested_interactions

-
## [90m# A tibble: 100 × 9[39m
+
## [90m# A tibble: 100 x 9[39m
 ##    sample  ligand          receptor ligand.name receptor.name origin destination
 ##    [3m[90m<chr>[39m[23m   [3m[90m<chr>[39m[23m           [3m[90m<chr>[39m[23m    [3m[90m<chr>[39m[23m       [3m[90m<chr>[39m[23m         [3m[90m<chr>[39m[23m  [3m[90m<chr>[39m[23m      
-## [90m 1[39m sample1 cluster 1.PTMA  cluster… PTMA        VIPR1         clust… cluster 2  
-## [90m 2[39m sample1 cluster 1.B2M   cluster… B2M         KLRD1         clust… cluster 2  
-## [90m 3[39m sample1 cluster 1.IL16  cluster… IL16        CD4           clust… cluster 2  
-## [90m 4[39m sample1 cluster 1.HLA-B cluster… HLA-B       KLRD1         clust… cluster 2  
-## [90m 5[39m sample1 cluster 1.CALM1 cluster… CALM1       VIPR1         clust… cluster 2  
-## [90m 6[39m sample1 cluster 1.HLA-E cluster… HLA-E       KLRD1         clust… cluster 2  
-## [90m 7[39m sample1 cluster 1.GNAS  cluster… GNAS        VIPR1         clust… cluster 2  
-## [90m 8[39m sample1 cluster 1.B2M   cluster… B2M         HFE           clust… cluster 2  
-## [90m 9[39m sample1 cluster 1.PTMA  cluster… PTMA        VIPR1         clust… cluster 3  
-## [90m10[39m sample1 cluster 1.CALM1 cluster… CALM1       VIPR1         clust… cluster 3  
-## [90m# ℹ 90 more rows[39m
-## [90m# ℹ 2 more variables: interaction.type <chr>, LRscore <dbl>[39m
+## [90m 1[39m sample1 cluster 1.PTMA cluster~ PTMA VIPR1 clust~ cluster 2 +## [90m 2[39m sample1 cluster 1.B2M cluster~ B2M KLRD1 clust~ cluster 2 +## [90m 3[39m sample1 cluster 1.IL16 cluster~ IL16 CD4 clust~ cluster 2 +## [90m 4[39m sample1 cluster 1.HLA-B cluster~ HLA-B KLRD1 clust~ cluster 2 +## [90m 5[39m sample1 cluster 1.CALM1 cluster~ CALM1 VIPR1 clust~ cluster 2 +## [90m 6[39m sample1 cluster 1.HLA-E cluster~ HLA-E KLRD1 clust~ cluster 2 +## [90m 7[39m sample1 cluster 1.GNAS cluster~ GNAS VIPR1 clust~ cluster 2 +## [90m 8[39m sample1 cluster 1.B2M cluster~ B2M HFE clust~ cluster 2 +## [90m 9[39m sample1 cluster 1.PTMA cluster~ PTMA VIPR1 clust~ cluster 3 +## [90m10[39m sample1 cluster 1.CALM1 cluster~ CALM1 VIPR1 clust~ cluster 3 +## [90m# i 90 more rows[39m +## [90m# i 2 more variables: interaction.type <chr>, LRscore <dbl>[39m

Aggregating cells @@ -776,9 +780,10 @@

Aggregating cells## metadata(0): ## assays(1): counts ## rownames(230): ACAP1 ACRBP ... ZNF330 ZNF76 -## rowData names(0): -## colnames(2): g1 g2 -## colData names(4): .aggregated_cells groups orig.ident file

+## rowData names(5): vst.mean vst.variance vst.variance.expected +## vst.variance.standardized vst.variable +## colnames(2): g1 g2 +## colData names(4): .aggregated_cells groups orig.ident file diff --git a/pkgdown.yml b/pkgdown.yml index 7b75823..355a456 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -1,7 +1,7 @@ -pandoc: 3.1.1 +pandoc: 3.1.13 pkgdown: 2.0.9 pkgdown_sha: ~ articles: introduction: introduction.html -last_built: 2024-05-04T10:34Z +last_built: 2024-05-10T05:17Z diff --git a/reference/add_class.html b/reference/add_class.html index 55779aa..3706cfd 100644 --- a/reference/add_class.html +++ b/reference/add_class.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/aggregate_cells.html b/reference/aggregate_cells.html index 9b12a4b..5e1b13e 100644 --- a/reference/aggregate_cells.html +++ b/reference/aggregate_cells.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/arrange.html b/reference/arrange.html index 4e6a793..3bcaaa8 100644 --- a/reference/arrange.html +++ b/reference/arrange.html @@ -22,7 +22,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -141,22 +141,22 @@

Examples

data(pbmc_small)
 pbmc_small |> 
     arrange(nFeature_RNA)
-#> # A SingleCellExperiment-tibble abstraction: 80 × 17
+#> # A SingleCellExperiment-tibble abstraction: 80 x 17
 #> # Features=230 | Cells=80 | Assays=counts, logcounts
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#>  1 CATG… SeuratPro…         51           26 0               A             g2    
-#>  2 GGCA… SeuratPro…        172           29 0               A             g1    
-#>  3 AGTC… SeuratPro…        157           29 0               A             g1    
-#>  4 GACG… SeuratPro…        202           30 0               A             g2    
-#>  5 GGAA… SeuratPro…        150           30 0               A             g2    
-#>  6 AGGT… SeuratPro…         62           31 0               A             g2    
-#>  7 CTTC… SeuratPro…         41           32 0               A             g2    
-#>  8 GTAA… SeuratPro…         67           33 0               A             g2    
-#>  9 GTCA… SeuratPro…        210           33 0               A             g2    
-#> 10 TGGT… SeuratPro…         64           36 0               A             g1    
-#> # ℹ 70 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 CATG~ SeuratPro~         51           26 0               A             g2    
+#>  2 GGCA~ SeuratPro~        172           29 0               A             g1    
+#>  3 AGTC~ SeuratPro~        157           29 0               A             g1    
+#>  4 GACG~ SeuratPro~        202           30 0               A             g2    
+#>  5 GGAA~ SeuratPro~        150           30 0               A             g2    
+#>  6 AGGT~ SeuratPro~         62           31 0               A             g2    
+#>  7 CTTC~ SeuratPro~         41           32 0               A             g2    
+#>  8 GTAA~ SeuratPro~         67           33 0               A             g2    
+#>  9 GTCA~ SeuratPro~        210           33 0               A             g2    
+#> 10 TGGT~ SeuratPro~         64           36 0               A             g1    
+#> # i 70 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
     
diff --git a/reference/as_tibble.html b/reference/as_tibble.html
index b31f88f..1cdd76c 100644
--- a/reference/as_tibble.html
+++ b/reference/as_tibble.html
@@ -32,7 +32,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -170,21 +170,21 @@

See also

Examples

data(pbmc_small)
 pbmc_small |> as_tibble()
-#> # A tibble: 80 × 31
+#> # A tibble: 80 x 31
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#>  1 ATGC… SeuratPro…         70           47 0               A             g2    
-#>  2 CATG… SeuratPro…         85           52 0               A             g1    
-#>  3 GAAC… SeuratPro…         87           50 1               B             g2    
-#>  4 TGAC… SeuratPro…        127           56 0               A             g2    
-#>  5 AGTC… SeuratPro…        173           53 0               A             g2    
-#>  6 TCTG… SeuratPro…         70           48 0               A             g1    
-#>  7 TGGT… SeuratPro…         64           36 0               A             g1    
-#>  8 GCAG… SeuratPro…         72           45 0               A             g1    
-#>  9 GATA… SeuratPro…         52           36 0               A             g1    
-#> 10 AATG… SeuratPro…        100           41 0               A             g1    
-#> # ℹ 70 more rows
-#> # ℹ 24 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 ATGC~ SeuratPro~         70           47 0               A             g2    
+#>  2 CATG~ SeuratPro~         85           52 0               A             g1    
+#>  3 GAAC~ SeuratPro~         87           50 1               B             g2    
+#>  4 TGAC~ SeuratPro~        127           56 0               A             g2    
+#>  5 AGTC~ SeuratPro~        173           53 0               A             g2    
+#>  6 TCTG~ SeuratPro~         70           48 0               A             g1    
+#>  7 TGGT~ SeuratPro~         64           36 0               A             g1    
+#>  8 GCAG~ SeuratPro~         72           45 0               A             g1    
+#>  9 GATA~ SeuratPro~         52           36 0               A             g1    
+#> 10 AATG~ SeuratPro~        100           41 0               A             g1    
+#> # i 70 more rows
+#> # i 24 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, PC_6 <dbl>,
 #> #   PC_7 <dbl>, PC_8 <dbl>, PC_9 <dbl>, PC_10 <dbl>, PC_11 <dbl>, PC_12 <dbl>,
 #> #   PC_13 <dbl>, PC_14 <dbl>, PC_15 <dbl>, PC_16 <dbl>, PC_17 <dbl>,
diff --git a/reference/bind_rows.html b/reference/bind_rows.html
index f013333..fb5e4f1 100644
--- a/reference/bind_rows.html
+++ b/reference/bind_rows.html
@@ -22,7 +22,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -129,22 +129,22 @@

Examples

tt <- pbmc_small bind_rows(tt, tt) #> Warning: tidySingleCellExperiment says: you have duplicated cell names; they will be made unique. -#> # A SingleCellExperiment-tibble abstraction: 160 × 17 +#> # A SingleCellExperiment-tibble abstraction: 160 x 17 #> # Features=230 | Cells=160 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 ATGC… SeuratPro… 70 47 0 A g2 -#> 2 CATG… SeuratPro… 85 52 0 A g1 -#> 3 GAAC… SeuratPro… 87 50 1 B g2 -#> 4 TGAC… SeuratPro… 127 56 0 A g2 -#> 5 AGTC… SeuratPro… 173 53 0 A g2 -#> 6 TCTG… SeuratPro… 70 48 0 A g1 -#> 7 TGGT… SeuratPro… 64 36 0 A g1 -#> 8 GCAG… SeuratPro… 72 45 0 A g1 -#> 9 GATA… SeuratPro… 52 36 0 A g1 -#> 10 AATG… SeuratPro… 100 41 0 A g1 -#> # ℹ 150 more rows -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGC~ SeuratPro~ 70 47 0 A g2 +#> 2 CATG~ SeuratPro~ 85 52 0 A g1 +#> 3 GAAC~ SeuratPro~ 87 50 1 B g2 +#> 4 TGAC~ SeuratPro~ 127 56 0 A g2 +#> 5 AGTC~ SeuratPro~ 173 53 0 A g2 +#> 6 TCTG~ SeuratPro~ 70 48 0 A g1 +#> 7 TGGT~ SeuratPro~ 64 36 0 A g1 +#> 8 GCAG~ SeuratPro~ 72 45 0 A g1 +#> 9 GATA~ SeuratPro~ 52 36 0 A g1 +#> 10 AATG~ SeuratPro~ 100 41 0 A g1 +#> # i 150 more rows +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> @@ -152,16 +152,16 @@

Examples

#> tidySingleCellExperiment says: Key columns are missing. A data frame is returned for independent data analysis. tt |> bind_cols(tt_bind) #> New names: -#> `nCount_RNA` -> `nCount_RNA...2` -#> `nFeature_RNA` -> `nFeature_RNA...3` -#> `nCount_RNA` -> `nCount_RNA...10` -#> `nFeature_RNA` -> `nFeature_RNA...11` +#> * `nCount_RNA` -> `nCount_RNA...2` +#> * `nFeature_RNA` -> `nFeature_RNA...3` +#> * `nCount_RNA` -> `nCount_RNA...10` +#> * `nFeature_RNA` -> `nFeature_RNA...11` #> New names: -#> `nCount_RNA...2` -> `nCount_RNA...3` -#> `nFeature_RNA...3` -> `nFeature_RNA...4` -#> `nCount_RNA...10` -> `nCount_RNA...11` -#> `nFeature_RNA...11` -> `nFeature_RNA...12` -#> # A SingleCellExperiment-tibble abstraction: 80 × 19 +#> * `nCount_RNA...2` -> `nCount_RNA...3` +#> * `nFeature_RNA...3` -> `nFeature_RNA...4` +#> * `nCount_RNA...10` -> `nCount_RNA...11` +#> * `nFeature_RNA...11` -> `nFeature_RNA...12` +#> # A SingleCellExperiment-tibble abstraction: 80 x 19 #> # Features=230 | Cells=80 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA...3 nFeature_RNA...4 RNA_snn_res.0.8 #> <chr> <fct> <dbl> <int> <fct> @@ -175,8 +175,8 @@

Examples

#> 8 GCAGCTCTGTTTCT SeuratProject 72 45 0 #> 9 GATATAACACGCAT SeuratProject 52 36 0 #> 10 AATGTTGACAGTCA SeuratProject 100 41 0 -#> # ℹ 70 more rows -#> # ℹ 14 more variables: letter.idents <fct>, groups <chr>, RNA_snn_res.1 <fct>, +#> # i 70 more rows +#> # i 14 more variables: letter.idents <fct>, groups <chr>, RNA_snn_res.1 <fct>, #> # file <chr>, ident <fct>, nCount_RNA...11 <dbl>, nFeature_RNA...12 <int>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> diff --git a/reference/cell_type_df.html b/reference/cell_type_df.html index a75ba77..230b4a4 100644 --- a/reference/cell_type_df.html +++ b/reference/cell_type_df.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/count.html b/reference/count.html index 0657b4e..95c7a76 100644 --- a/reference/count.html +++ b/reference/count.html @@ -25,7 +25,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -144,7 +144,7 @@

Examples

data(pbmc_small)
 pbmc_small |> count(groups)
 #> tidySingleCellExperiment says: A data frame is returned for independent data analysis.
-#> # A tibble: 2 × 2
+#> # A tibble: 2 x 2
 #>   groups     n
 #>   <chr>  <int>
 #> 1 g1        44
diff --git a/reference/distinct.html b/reference/distinct.html
index 1ea083f..3ed81ad 100644
--- a/reference/distinct.html
+++ b/reference/distinct.html
@@ -18,7 +18,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -116,7 +116,7 @@

Examples

data(pbmc_small)
 pbmc_small |> distinct(groups)
 #> tidySingleCellExperiment says: A data frame is returned for independent data analysis.
-#> # A tibble: 2 × 1
+#> # A tibble: 2 x 1
 #>   groups
 #>   <chr> 
 #> 1 g2    
diff --git a/reference/drop_class.html b/reference/drop_class.html
index 9c300a9..722aff8 100644
--- a/reference/drop_class.html
+++ b/reference/drop_class.html
@@ -17,7 +17,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
diff --git a/reference/extract.html b/reference/extract.html index 7b23722..845a423 100644 --- a/reference/extract.html +++ b/reference/extract.html @@ -24,7 +24,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -141,22 +141,22 @@

Examples

into="g", regex="g([0-9])", convert=TRUE) -#> # A SingleCellExperiment-tibble abstraction: 80 × 17 +#> # A SingleCellExperiment-tibble abstraction: 80 x 17 #> # Features=230 | Cells=80 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents g #> <chr> <fct> <dbl> <int> <fct> <fct> <int> -#> 1 ATGCC… SeuratPro… 70 47 0 A 2 -#> 2 CATGG… SeuratPro… 85 52 0 A 1 -#> 3 GAACC… SeuratPro… 87 50 1 B 2 -#> 4 TGACT… SeuratPro… 127 56 0 A 2 -#> 5 AGTCA… SeuratPro… 173 53 0 A 2 -#> 6 TCTGA… SeuratPro… 70 48 0 A 1 -#> 7 TGGTA… SeuratPro… 64 36 0 A 1 -#> 8 GCAGC… SeuratPro… 72 45 0 A 1 -#> 9 GATAT… SeuratPro… 52 36 0 A 1 -#> 10 AATGT… SeuratPro… 100 41 0 A 1 -#> # ℹ 70 more rows -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGCC~ SeuratPro~ 70 47 0 A 2 +#> 2 CATGG~ SeuratPro~ 85 52 0 A 1 +#> 3 GAACC~ SeuratPro~ 87 50 1 B 2 +#> 4 TGACT~ SeuratPro~ 127 56 0 A 2 +#> 5 AGTCA~ SeuratPro~ 173 53 0 A 2 +#> 6 TCTGA~ SeuratPro~ 70 48 0 A 1 +#> 7 TGGTA~ SeuratPro~ 64 36 0 A 1 +#> 8 GCAGC~ SeuratPro~ 72 45 0 A 1 +#> 9 GATAT~ SeuratPro~ 52 36 0 A 1 +#> 10 AATGT~ SeuratPro~ 100 41 0 A 1 +#> # i 70 more rows +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> diff --git a/reference/filter.html b/reference/filter.html index c6ac9bb..1b5c750 100644 --- a/reference/filter.html +++ b/reference/filter.html @@ -21,7 +21,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -171,22 +171,22 @@

See also

Examples

data(pbmc_small)
 pbmc_small |> filter(groups == "g1")
-#> # A SingleCellExperiment-tibble abstraction: 44 × 17
+#> # A SingleCellExperiment-tibble abstraction: 44 x 17
 #> # Features=230 | Cells=44 | Assays=counts, logcounts
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#>  1 CATG… SeuratPro…         85           52 0               A             g1    
-#>  2 TCTG… SeuratPro…         70           48 0               A             g1    
-#>  3 TGGT… SeuratPro…         64           36 0               A             g1    
-#>  4 GCAG… SeuratPro…         72           45 0               A             g1    
-#>  5 GATA… SeuratPro…         52           36 0               A             g1    
-#>  6 AATG… SeuratPro…        100           41 0               A             g1    
-#>  7 AGAG… SeuratPro…        191           61 0               A             g1    
-#>  8 CTAA… SeuratPro…        168           44 0               A             g1    
-#>  9 TTGG… SeuratPro…        135           45 0               A             g1    
-#> 10 CATC… SeuratPro…         79           43 0               A             g1    
-#> # ℹ 34 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 CATG~ SeuratPro~         85           52 0               A             g1    
+#>  2 TCTG~ SeuratPro~         70           48 0               A             g1    
+#>  3 TGGT~ SeuratPro~         64           36 0               A             g1    
+#>  4 GCAG~ SeuratPro~         72           45 0               A             g1    
+#>  5 GATA~ SeuratPro~         52           36 0               A             g1    
+#>  6 AATG~ SeuratPro~        100           41 0               A             g1    
+#>  7 AGAG~ SeuratPro~        191           61 0               A             g1    
+#>  8 CTAA~ SeuratPro~        168           44 0               A             g1    
+#>  9 TTGG~ SeuratPro~        135           45 0               A             g1    
+#> 10 CATC~ SeuratPro~         79           43 0               A             g1    
+#> # i 34 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 
diff --git a/reference/formatting.html b/reference/formatting.html
index 4c5bf77..4c8658e 100644
--- a/reference/formatting.html
+++ b/reference/formatting.html
@@ -36,7 +36,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -133,22 +133,22 @@

Value

Examples

data(pbmc_small)
 print(pbmc_small)
-#> # A SingleCellExperiment-tibble abstraction: 80 × 17
+#> # A SingleCellExperiment-tibble abstraction: 80 x 17
 #> # Features=230 | Cells=80 | Assays=counts, logcounts
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#>  1 ATGC… SeuratPro…         70           47 0               A             g2    
-#>  2 CATG… SeuratPro…         85           52 0               A             g1    
-#>  3 GAAC… SeuratPro…         87           50 1               B             g2    
-#>  4 TGAC… SeuratPro…        127           56 0               A             g2    
-#>  5 AGTC… SeuratPro…        173           53 0               A             g2    
-#>  6 TCTG… SeuratPro…         70           48 0               A             g1    
-#>  7 TGGT… SeuratPro…         64           36 0               A             g1    
-#>  8 GCAG… SeuratPro…         72           45 0               A             g1    
-#>  9 GATA… SeuratPro…         52           36 0               A             g1    
-#> 10 AATG… SeuratPro…        100           41 0               A             g1    
-#> # ℹ 70 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 ATGC~ SeuratPro~         70           47 0               A             g2    
+#>  2 CATG~ SeuratPro~         85           52 0               A             g1    
+#>  3 GAAC~ SeuratPro~         87           50 1               B             g2    
+#>  4 TGAC~ SeuratPro~        127           56 0               A             g2    
+#>  5 AGTC~ SeuratPro~        173           53 0               A             g2    
+#>  6 TCTG~ SeuratPro~         70           48 0               A             g1    
+#>  7 TGGT~ SeuratPro~         64           36 0               A             g1    
+#>  8 GCAG~ SeuratPro~         72           45 0               A             g1    
+#>  9 GATA~ SeuratPro~         52           36 0               A             g1    
+#> 10 AATG~ SeuratPro~        100           41 0               A             g1    
+#> # i 70 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 
diff --git a/reference/full_join.html b/reference/full_join.html
index e8854d4..a4398fa 100644
--- a/reference/full_join.html
+++ b/reference/full_join.html
@@ -43,7 +43,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -246,21 +246,21 @@

Examples

tt |> full_join(tibble::tibble(groups="g1", other=1:4)) #> Joining with `by = join_by(groups)` #> tidySingleCellExperiment says: This operation lead to duplicated cell names. A data frame is returned for independent data analysis. -#> # A tibble: 212 × 32 +#> # A tibble: 212 x 32 #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 ATGC… SeuratPro… 70 47 0 A g2 -#> 2 CATG… SeuratPro… 85 52 0 A g1 -#> 3 CATG… SeuratPro… 85 52 0 A g1 -#> 4 CATG… SeuratPro… 85 52 0 A g1 -#> 5 CATG… SeuratPro… 85 52 0 A g1 -#> 6 GAAC… SeuratPro… 87 50 1 B g2 -#> 7 TGAC… SeuratPro… 127 56 0 A g2 -#> 8 AGTC… SeuratPro… 173 53 0 A g2 -#> 9 TCTG… SeuratPro… 70 48 0 A g1 -#> 10 TCTG… SeuratPro… 70 48 0 A g1 -#> # ℹ 202 more rows -#> # ℹ 25 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGC~ SeuratPro~ 70 47 0 A g2 +#> 2 CATG~ SeuratPro~ 85 52 0 A g1 +#> 3 CATG~ SeuratPro~ 85 52 0 A g1 +#> 4 CATG~ SeuratPro~ 85 52 0 A g1 +#> 5 CATG~ SeuratPro~ 85 52 0 A g1 +#> 6 GAAC~ SeuratPro~ 87 50 1 B g2 +#> 7 TGAC~ SeuratPro~ 127 56 0 A g2 +#> 8 AGTC~ SeuratPro~ 173 53 0 A g2 +#> 9 TCTG~ SeuratPro~ 70 48 0 A g1 +#> 10 TCTG~ SeuratPro~ 70 48 0 A g1 +#> # i 202 more rows +#> # i 25 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, PC_6 <dbl>, #> # PC_7 <dbl>, PC_8 <dbl>, PC_9 <dbl>, PC_10 <dbl>, PC_11 <dbl>, PC_12 <dbl>, #> # PC_13 <dbl>, PC_14 <dbl>, PC_15 <dbl>, PC_16 <dbl>, PC_17 <dbl>, diff --git a/reference/ggplot.html b/reference/ggplot.html index 11b7890..1a42558 100644 --- a/reference/ggplot.html +++ b/reference/ggplot.html @@ -20,7 +20,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -123,6 +123,10 @@

Details

values are passed into the function in the right order. In the examples below, however, they are left in place for clarity.

+
+

See also

+

The first steps chapter of the online ggplot2 book.

+

Examples

diff --git a/reference/glimpse.html b/reference/glimpse.html index 55e4074..fe6cda9 100644 --- a/reference/glimpse.html +++ b/reference/glimpse.html @@ -24,7 +24,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1
diff --git a/reference/group_by.html b/reference/group_by.html index 496ad6a..220d1e9 100644 --- a/reference/group_by.html +++ b/reference/group_by.html @@ -19,7 +19,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -164,22 +164,22 @@

Examples

data(pbmc_small)
 pbmc_small |> group_by(groups)
 #> tidySingleCellExperiment says: A data frame is returned for independent data analysis.
-#> # A tibble: 80 × 31
+#> # A tibble: 80 x 31
 #> # Groups:   groups [2]
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#>  1 ATGC… SeuratPro…         70           47 0               A             g2    
-#>  2 CATG… SeuratPro…         85           52 0               A             g1    
-#>  3 GAAC… SeuratPro…         87           50 1               B             g2    
-#>  4 TGAC… SeuratPro…        127           56 0               A             g2    
-#>  5 AGTC… SeuratPro…        173           53 0               A             g2    
-#>  6 TCTG… SeuratPro…         70           48 0               A             g1    
-#>  7 TGGT… SeuratPro…         64           36 0               A             g1    
-#>  8 GCAG… SeuratPro…         72           45 0               A             g1    
-#>  9 GATA… SeuratPro…         52           36 0               A             g1    
-#> 10 AATG… SeuratPro…        100           41 0               A             g1    
-#> # ℹ 70 more rows
-#> # ℹ 24 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 ATGC~ SeuratPro~         70           47 0               A             g2    
+#>  2 CATG~ SeuratPro~         85           52 0               A             g1    
+#>  3 GAAC~ SeuratPro~         87           50 1               B             g2    
+#>  4 TGAC~ SeuratPro~        127           56 0               A             g2    
+#>  5 AGTC~ SeuratPro~        173           53 0               A             g2    
+#>  6 TCTG~ SeuratPro~         70           48 0               A             g1    
+#>  7 TGGT~ SeuratPro~         64           36 0               A             g1    
+#>  8 GCAG~ SeuratPro~         72           45 0               A             g1    
+#>  9 GATA~ SeuratPro~         52           36 0               A             g1    
+#> 10 AATG~ SeuratPro~        100           41 0               A             g1    
+#> # i 70 more rows
+#> # i 24 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, PC_6 <dbl>,
 #> #   PC_7 <dbl>, PC_8 <dbl>, PC_9 <dbl>, PC_10 <dbl>, PC_11 <dbl>, PC_12 <dbl>,
 #> #   PC_13 <dbl>, PC_14 <dbl>, PC_15 <dbl>, PC_16 <dbl>, PC_17 <dbl>,
diff --git a/reference/group_split.html b/reference/group_split.html
index c53ec35..415b76e 100644
--- a/reference/group_split.html
+++ b/reference/group_split.html
@@ -29,7 +29,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -135,42 +135,42 @@

Examples

data(pbmc_small)
 pbmc_small |> group_split(groups)
 #> [[1]]
-#> # A SingleCellExperiment-tibble abstraction: 44 × 17
+#> # A SingleCellExperiment-tibble abstraction: 44 x 17
 #> # Features=230 | Cells=44 | Assays=counts, logcounts
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#>  1 CATG… SeuratPro…         85           52 0               A             g1    
-#>  2 TCTG… SeuratPro…         70           48 0               A             g1    
-#>  3 TGGT… SeuratPro…         64           36 0               A             g1    
-#>  4 GCAG… SeuratPro…         72           45 0               A             g1    
-#>  5 GATA… SeuratPro…         52           36 0               A             g1    
-#>  6 AATG… SeuratPro…        100           41 0               A             g1    
-#>  7 AGAG… SeuratPro…        191           61 0               A             g1    
-#>  8 CTAA… SeuratPro…        168           44 0               A             g1    
-#>  9 TTGG… SeuratPro…        135           45 0               A             g1    
-#> 10 CATC… SeuratPro…         79           43 0               A             g1    
-#> # ℹ 34 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 CATG~ SeuratPro~         85           52 0               A             g1    
+#>  2 TCTG~ SeuratPro~         70           48 0               A             g1    
+#>  3 TGGT~ SeuratPro~         64           36 0               A             g1    
+#>  4 GCAG~ SeuratPro~         72           45 0               A             g1    
+#>  5 GATA~ SeuratPro~         52           36 0               A             g1    
+#>  6 AATG~ SeuratPro~        100           41 0               A             g1    
+#>  7 AGAG~ SeuratPro~        191           61 0               A             g1    
+#>  8 CTAA~ SeuratPro~        168           44 0               A             g1    
+#>  9 TTGG~ SeuratPro~        135           45 0               A             g1    
+#> 10 CATC~ SeuratPro~         79           43 0               A             g1    
+#> # i 34 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 #> 
 #> [[2]]
-#> # A SingleCellExperiment-tibble abstraction: 36 × 17
+#> # A SingleCellExperiment-tibble abstraction: 36 x 17
 #> # Features=230 | Cells=36 | Assays=counts, logcounts
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#>  1 ATGC… SeuratPro…         70           47 0               A             g2    
-#>  2 GAAC… SeuratPro…         87           50 1               B             g2    
-#>  3 TGAC… SeuratPro…        127           56 0               A             g2    
-#>  4 AGTC… SeuratPro…        173           53 0               A             g2    
-#>  5 AGGT… SeuratPro…         62           31 0               A             g2    
-#>  6 GGGT… SeuratPro…        101           41 0               A             g2    
-#>  7 CATG… SeuratPro…         51           26 0               A             g2    
-#>  8 TACG… SeuratPro…         99           45 0               A             g2    
-#>  9 GTAA… SeuratPro…         67           33 0               A             g2    
-#> 10 TACA… SeuratPro…        109           41 0               A             g2    
-#> # ℹ 26 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 ATGC~ SeuratPro~         70           47 0               A             g2    
+#>  2 GAAC~ SeuratPro~         87           50 1               B             g2    
+#>  3 TGAC~ SeuratPro~        127           56 0               A             g2    
+#>  4 AGTC~ SeuratPro~        173           53 0               A             g2    
+#>  5 AGGT~ SeuratPro~         62           31 0               A             g2    
+#>  6 GGGT~ SeuratPro~        101           41 0               A             g2    
+#>  7 CATG~ SeuratPro~         51           26 0               A             g2    
+#>  8 TACG~ SeuratPro~         99           45 0               A             g2    
+#>  9 GTAA~ SeuratPro~         67           33 0               A             g2    
+#> 10 TACA~ SeuratPro~        109           41 0               A             g2    
+#> # i 26 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 #> 
diff --git a/reference/index.html b/reference/index.html
index 6c7822e..2667f1d 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -17,7 +17,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
diff --git a/reference/inner_join.html b/reference/inner_join.html index fa5bbc6..67bb3a8 100644 --- a/reference/inner_join.html +++ b/reference/inner_join.html @@ -43,7 +43,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -249,22 +249,22 @@

Examples

slice(1)) #> tidySingleCellExperiment says: A data frame is returned for independent data analysis. #> Joining with `by = join_by(groups)` -#> # A SingleCellExperiment-tibble abstraction: 36 × 18 +#> # A SingleCellExperiment-tibble abstraction: 36 x 18 #> # Features=230 | Cells=36 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 ATGC… SeuratPro… 70 47 0 A g2 -#> 2 GAAC… SeuratPro… 87 50 1 B g2 -#> 3 TGAC… SeuratPro… 127 56 0 A g2 -#> 4 AGTC… SeuratPro… 173 53 0 A g2 -#> 5 AGGT… SeuratPro… 62 31 0 A g2 -#> 6 GGGT… SeuratPro… 101 41 0 A g2 -#> 7 CATG… SeuratPro… 51 26 0 A g2 -#> 8 TACG… SeuratPro… 99 45 0 A g2 -#> 9 GTAA… SeuratPro… 67 33 0 A g2 -#> 10 TACA… SeuratPro… 109 41 0 A g2 -#> # ℹ 26 more rows -#> # ℹ 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGC~ SeuratPro~ 70 47 0 A g2 +#> 2 GAAC~ SeuratPro~ 87 50 1 B g2 +#> 3 TGAC~ SeuratPro~ 127 56 0 A g2 +#> 4 AGTC~ SeuratPro~ 173 53 0 A g2 +#> 5 AGGT~ SeuratPro~ 62 31 0 A g2 +#> 6 GGGT~ SeuratPro~ 101 41 0 A g2 +#> 7 CATG~ SeuratPro~ 51 26 0 A g2 +#> 8 TACG~ SeuratPro~ 99 45 0 A g2 +#> 9 GTAA~ SeuratPro~ 67 33 0 A g2 +#> 10 TACA~ SeuratPro~ 109 41 0 A g2 +#> # i 26 more rows +#> # i 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # new_column <int>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, #> # PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl> diff --git a/reference/join_features.html b/reference/join_features.html index 4ed309a..db21653 100644 --- a/reference/join_features.html +++ b/reference/join_features.html @@ -18,7 +18,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -118,21 +118,21 @@

Examples

pbmc_small %>% join_features( features=c("HLA-DRA", "LYZ")) #> tidySingleCellExperiment says: join_features produces duplicate cell names to accomadate the long data format. For this reason, a data frame is returned for independent data analysis. Assay feature abundance is appended as .abundance_counts and .abundance_logcounts. -#> # A tibble: 160 × 34 +#> # A tibble: 160 x 34 #> .cell .feature .abundance_counts .abundance_logcounts orig.ident nCount_RNA #> <chr> <chr> <dbl> <dbl> <fct> <dbl> -#> 1 ATGCCA… HLA-DRA 0 0 SeuratPro… 70 -#> 2 ATGCCA… LYZ 1 4.97 SeuratPro… 70 -#> 3 CATGGC… HLA-DRA 1 4.78 SeuratPro… 85 -#> 4 CATGGC… LYZ 1 4.78 SeuratPro… 85 -#> 5 GAACCT… HLA-DRA 0 0 SeuratPro… 87 -#> 6 GAACCT… LYZ 1 4.75 SeuratPro… 87 -#> 7 TGACTG… HLA-DRA 0 0 SeuratPro… 127 -#> 8 TGACTG… LYZ 0 0 SeuratPro… 127 -#> 9 AGTCAG… HLA-DRA 1 4.07 SeuratPro… 173 -#> 10 AGTCAG… LYZ 0 0 SeuratPro… 173 -#> # ℹ 150 more rows -#> # ℹ 28 more variables: nFeature_RNA <int>, RNA_snn_res.0.8 <fct>, +#> 1 ATGCCA~ HLA-DRA 0 0 SeuratPro~ 70 +#> 2 ATGCCA~ LYZ 1 4.97 SeuratPro~ 70 +#> 3 CATGGC~ HLA-DRA 1 4.78 SeuratPro~ 85 +#> 4 CATGGC~ LYZ 1 4.78 SeuratPro~ 85 +#> 5 GAACCT~ HLA-DRA 0 0 SeuratPro~ 87 +#> 6 GAACCT~ LYZ 1 4.75 SeuratPro~ 87 +#> 7 TGACTG~ HLA-DRA 0 0 SeuratPro~ 127 +#> 8 TGACTG~ LYZ 0 0 SeuratPro~ 127 +#> 9 AGTCAG~ HLA-DRA 1 4.07 SeuratPro~ 173 +#> 10 AGTCAG~ LYZ 0 0 SeuratPro~ 173 +#> # i 150 more rows +#> # i 28 more variables: nFeature_RNA <int>, RNA_snn_res.0.8 <fct>, #> # letter.idents <fct>, groups <chr>, RNA_snn_res.1 <fct>, file <chr>, #> # ident <fct>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, #> # PC_6 <dbl>, PC_7 <dbl>, PC_8 <dbl>, PC_9 <dbl>, PC_10 <dbl>, PC_11 <dbl>, diff --git a/reference/join_transcripts.html b/reference/join_transcripts.html index e554e4e..1811014 100644 --- a/reference/join_transcripts.html +++ b/reference/join_transcripts.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/left_join.html b/reference/left_join.html index ae620e3..06099c9 100644 --- a/reference/left_join.html +++ b/reference/left_join.html @@ -43,7 +43,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -248,22 +248,22 @@

Examples

mutate(new_column=1:2)) #> tidySingleCellExperiment says: A data frame is returned for independent data analysis. #> Joining with `by = join_by(groups)` -#> # A SingleCellExperiment-tibble abstraction: 80 × 18 +#> # A SingleCellExperiment-tibble abstraction: 80 x 18 #> # Features=230 | Cells=80 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 ATGC… SeuratPro… 70 47 0 A g2 -#> 2 CATG… SeuratPro… 85 52 0 A g1 -#> 3 GAAC… SeuratPro… 87 50 1 B g2 -#> 4 TGAC… SeuratPro… 127 56 0 A g2 -#> 5 AGTC… SeuratPro… 173 53 0 A g2 -#> 6 TCTG… SeuratPro… 70 48 0 A g1 -#> 7 TGGT… SeuratPro… 64 36 0 A g1 -#> 8 GCAG… SeuratPro… 72 45 0 A g1 -#> 9 GATA… SeuratPro… 52 36 0 A g1 -#> 10 AATG… SeuratPro… 100 41 0 A g1 -#> # ℹ 70 more rows -#> # ℹ 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGC~ SeuratPro~ 70 47 0 A g2 +#> 2 CATG~ SeuratPro~ 85 52 0 A g1 +#> 3 GAAC~ SeuratPro~ 87 50 1 B g2 +#> 4 TGAC~ SeuratPro~ 127 56 0 A g2 +#> 5 AGTC~ SeuratPro~ 173 53 0 A g2 +#> 6 TCTG~ SeuratPro~ 70 48 0 A g1 +#> 7 TGGT~ SeuratPro~ 64 36 0 A g1 +#> 8 GCAG~ SeuratPro~ 72 45 0 A g1 +#> 9 GATA~ SeuratPro~ 52 36 0 A g1 +#> 10 AATG~ SeuratPro~ 100 41 0 A g1 +#> # i 70 more rows +#> # i 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # new_column <int>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, #> # PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl> @@ -275,22 +275,22 @@

Examples

#> tidySingleCellExperiment says: A data frame is returned for independent data analysis. tt |> left_join(DF) #> Joining with `by = join_by(groups)` -#> # A SingleCellExperiment-tibble abstraction: 80 × 18 +#> # A SingleCellExperiment-tibble abstraction: 80 x 18 #> # Features=230 | Cells=80 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 ATGC… SeuratPro… 70 47 0 A g2 -#> 2 CATG… SeuratPro… 85 52 0 A g1 -#> 3 GAAC… SeuratPro… 87 50 1 B g2 -#> 4 TGAC… SeuratPro… 127 56 0 A g2 -#> 5 AGTC… SeuratPro… 173 53 0 A g2 -#> 6 TCTG… SeuratPro… 70 48 0 A g1 -#> 7 TGGT… SeuratPro… 64 36 0 A g1 -#> 8 GCAG… SeuratPro… 72 45 0 A g1 -#> 9 GATA… SeuratPro… 52 36 0 A g1 -#> 10 AATG… SeuratPro… 100 41 0 A g1 -#> # ℹ 70 more rows -#> # ℹ 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGC~ SeuratPro~ 70 47 0 A g2 +#> 2 CATG~ SeuratPro~ 85 52 0 A g1 +#> 3 GAAC~ SeuratPro~ 87 50 1 B g2 +#> 4 TGAC~ SeuratPro~ 127 56 0 A g2 +#> 5 AGTC~ SeuratPro~ 173 53 0 A g2 +#> 6 TCTG~ SeuratPro~ 70 48 0 A g1 +#> 7 TGGT~ SeuratPro~ 64 36 0 A g1 +#> 8 GCAG~ SeuratPro~ 72 45 0 A g1 +#> 9 GATA~ SeuratPro~ 52 36 0 A g1 +#> 10 AATG~ SeuratPro~ 100 41 0 A g1 +#> # i 70 more rows +#> # i 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # new_column <int>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, #> # PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl> diff --git a/reference/mutate.html b/reference/mutate.html index c824fc3..99de8a9 100644 --- a/reference/mutate.html +++ b/reference/mutate.html @@ -19,7 +19,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -161,22 +161,22 @@

See also

Examples

data(pbmc_small)
 pbmc_small |> mutate(nFeature_RNA=1)
-#> # A SingleCellExperiment-tibble abstraction: 80 × 17
+#> # A SingleCellExperiment-tibble abstraction: 80 x 17
 #> # Features=230 | Cells=80 | Assays=counts, logcounts
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <dbl> <fct>           <fct>         <chr> 
-#>  1 ATGC… SeuratPro…         70            1 0               A             g2    
-#>  2 CATG… SeuratPro…         85            1 0               A             g1    
-#>  3 GAAC… SeuratPro…         87            1 1               B             g2    
-#>  4 TGAC… SeuratPro…        127            1 0               A             g2    
-#>  5 AGTC… SeuratPro…        173            1 0               A             g2    
-#>  6 TCTG… SeuratPro…         70            1 0               A             g1    
-#>  7 TGGT… SeuratPro…         64            1 0               A             g1    
-#>  8 GCAG… SeuratPro…         72            1 0               A             g1    
-#>  9 GATA… SeuratPro…         52            1 0               A             g1    
-#> 10 AATG… SeuratPro…        100            1 0               A             g1    
-#> # ℹ 70 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 ATGC~ SeuratPro~         70            1 0               A             g2    
+#>  2 CATG~ SeuratPro~         85            1 0               A             g1    
+#>  3 GAAC~ SeuratPro~         87            1 1               B             g2    
+#>  4 TGAC~ SeuratPro~        127            1 0               A             g2    
+#>  5 AGTC~ SeuratPro~        173            1 0               A             g2    
+#>  6 TCTG~ SeuratPro~         70            1 0               A             g1    
+#>  7 TGGT~ SeuratPro~         64            1 0               A             g1    
+#>  8 GCAG~ SeuratPro~         72            1 0               A             g1    
+#>  9 GATA~ SeuratPro~         52            1 0               A             g1    
+#> 10 AATG~ SeuratPro~        100            1 0               A             g1    
+#> # i 70 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 
diff --git a/reference/nest.html b/reference/nest.html
index b6d6570..a134d40 100644
--- a/reference/nest.html
+++ b/reference/nest.html
@@ -22,7 +22,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -149,22 +149,22 @@

Examples

pbmc_small |> nest(data=-groups) |> unnest(data) -#> # A SingleCellExperiment-tibble abstraction: 80 × 17 +#> # A SingleCellExperiment-tibble abstraction: 80 x 17 #> # Features=230 | Cells=80 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents #> <chr> <fct> <dbl> <int> <fct> <fct> -#> 1 ATGCCAGAACG… SeuratPro… 70 47 0 A -#> 2 GAACCTGATGA… SeuratPro… 87 50 1 B -#> 3 TGACTGGATTC… SeuratPro… 127 56 0 A -#> 4 AGTCAGACTGC… SeuratPro… 173 53 0 A -#> 5 AGGTCATGAGT… SeuratPro… 62 31 0 A -#> 6 GGGTAACTCTA… SeuratPro… 101 41 0 A -#> 7 CATGAGACACG… SeuratPro… 51 26 0 A -#> 8 TACGCCACTCC… SeuratPro… 99 45 0 A -#> 9 GTAAGCACTCA… SeuratPro… 67 33 0 A -#> 10 TACATCACGCT… SeuratPro… 109 41 0 A -#> # ℹ 70 more rows -#> # ℹ 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGCCAGAACG~ SeuratPro~ 70 47 0 A +#> 2 GAACCTGATGA~ SeuratPro~ 87 50 1 B +#> 3 TGACTGGATTC~ SeuratPro~ 127 56 0 A +#> 4 AGTCAGACTGC~ SeuratPro~ 173 53 0 A +#> 5 AGGTCATGAGT~ SeuratPro~ 62 31 0 A +#> 6 GGGTAACTCTA~ SeuratPro~ 101 41 0 A +#> 7 CATGAGACACG~ SeuratPro~ 51 26 0 A +#> 8 TACGCCACTCC~ SeuratPro~ 99 45 0 A +#> 9 GTAAGCACTCA~ SeuratPro~ 67 33 0 A +#> 10 TACATCACGCT~ SeuratPro~ 109 41 0 A +#> # i 70 more rows +#> # i 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # groups <chr>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, #> # tSNE_1 <dbl>, tSNE_2 <dbl> diff --git a/reference/pbmc_small.html b/reference/pbmc_small.html index 240d3e7..2eb10d7 100644 --- a/reference/pbmc_small.html +++ b/reference/pbmc_small.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/pbmc_small_nested_interactions.html b/reference/pbmc_small_nested_interactions.html index 376e4b1..eeec29b 100644 --- a/reference/pbmc_small_nested_interactions.html +++ b/reference/pbmc_small_nested_interactions.html @@ -19,7 +19,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/pipe.html b/reference/pipe.html index 27db3f2..6efdacd 100644 --- a/reference/pipe.html +++ b/reference/pipe.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/pivot_longer.html b/reference/pivot_longer.html index b6fb9b9..38cb70b 100644 --- a/reference/pivot_longer.html +++ b/reference/pivot_longer.html @@ -20,7 +20,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -214,21 +214,21 @@

Examples

cols=c(orig.ident, groups), names_to="name", values_to="value") #> tidySingleCellExperiment says: A data frame is returned for independent data analysis. -#> # A tibble: 160 × 31 +#> # A tibble: 160 x 31 #> .cell nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents RNA_snn_res.1 #> <chr> <dbl> <int> <fct> <fct> <fct> -#> 1 ATGCCAGA… 70 47 0 A 0 -#> 2 ATGCCAGA… 70 47 0 A 0 -#> 3 CATGGCCT… 85 52 0 A 0 -#> 4 CATGGCCT… 85 52 0 A 0 -#> 5 GAACCTGA… 87 50 1 B 0 -#> 6 GAACCTGA… 87 50 1 B 0 -#> 7 TGACTGGA… 127 56 0 A 0 -#> 8 TGACTGGA… 127 56 0 A 0 -#> 9 AGTCAGAC… 173 53 0 A 0 -#> 10 AGTCAGAC… 173 53 0 A 0 -#> # ℹ 150 more rows -#> # ℹ 25 more variables: file <chr>, ident <fct>, PC_1 <dbl>, PC_2 <dbl>, +#> 1 ATGCCAGA~ 70 47 0 A 0 +#> 2 ATGCCAGA~ 70 47 0 A 0 +#> 3 CATGGCCT~ 85 52 0 A 0 +#> 4 CATGGCCT~ 85 52 0 A 0 +#> 5 GAACCTGA~ 87 50 1 B 0 +#> 6 GAACCTGA~ 87 50 1 B 0 +#> 7 TGACTGGA~ 127 56 0 A 0 +#> 8 TGACTGGA~ 127 56 0 A 0 +#> 9 AGTCAGAC~ 173 53 0 A 0 +#> 10 AGTCAGAC~ 173 53 0 A 0 +#> # i 150 more rows +#> # i 25 more variables: file <chr>, ident <fct>, PC_1 <dbl>, PC_2 <dbl>, #> # PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, PC_6 <dbl>, PC_7 <dbl>, PC_8 <dbl>, #> # PC_9 <dbl>, PC_10 <dbl>, PC_11 <dbl>, PC_12 <dbl>, PC_13 <dbl>, #> # PC_14 <dbl>, PC_15 <dbl>, PC_16 <dbl>, PC_17 <dbl>, PC_18 <dbl>, diff --git a/reference/plot_ly.html b/reference/plot_ly.html index 284314d..d09c102 100644 --- a/reference/plot_ly.html +++ b/reference/plot_ly.html @@ -22,7 +22,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -274,7 +274,7 @@

Examples

pbmc_small |> plot_ly(x = ~ nCount_RNA, y = ~ nFeature_RNA)
- +
diff --git a/reference/pull.html b/reference/pull.html index 2b86226..59725d5 100644 --- a/reference/pull.html +++ b/reference/pull.html @@ -19,7 +19,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/quo_names.html b/reference/quo_names.html index 3e2cb91..1e981de 100644 --- a/reference/quo_names.html +++ b/reference/quo_names.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/rename.html b/reference/rename.html index 944cec4..808e070 100644 --- a/reference/rename.html +++ b/reference/rename.html @@ -19,7 +19,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -101,7 +101,7 @@

Methods

implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

The following methods are currently available in loaded packages: - (vector, Vector), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) + (Vector, vector), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) .

@@ -117,22 +117,22 @@

See also

Examples

data(pbmc_small)
 pbmc_small |> rename(s_score=nFeature_RNA)
-#> # A SingleCellExperiment-tibble abstraction: 80 × 17
+#> # A SingleCellExperiment-tibble abstraction: 80 x 17
 #> # Features=230 | Cells=80 | Assays=counts, logcounts
 #>    .cell      orig.ident nCount_RNA s_score RNA_snn_res.0.8 letter.idents groups
 #>    <chr>      <fct>           <dbl>   <int> <fct>           <fct>         <chr> 
-#>  1 ATGCCAGAA… SeuratPro…         70      47 0               A             g2    
-#>  2 CATGGCCTG… SeuratPro…         85      52 0               A             g1    
-#>  3 GAACCTGAT… SeuratPro…         87      50 1               B             g2    
-#>  4 TGACTGGAT… SeuratPro…        127      56 0               A             g2    
-#>  5 AGTCAGACT… SeuratPro…        173      53 0               A             g2    
-#>  6 TCTGATACA… SeuratPro…         70      48 0               A             g1    
-#>  7 TGGTATCTA… SeuratPro…         64      36 0               A             g1    
-#>  8 GCAGCTCTG… SeuratPro…         72      45 0               A             g1    
-#>  9 GATATAACA… SeuratPro…         52      36 0               A             g1    
-#> 10 AATGTTGAC… SeuratPro…        100      41 0               A             g1    
-#> # ℹ 70 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 ATGCCAGAA~ SeuratPro~         70      47 0               A             g2    
+#>  2 CATGGCCTG~ SeuratPro~         85      52 0               A             g1    
+#>  3 GAACCTGAT~ SeuratPro~         87      50 1               B             g2    
+#>  4 TGACTGGAT~ SeuratPro~        127      56 0               A             g2    
+#>  5 AGTCAGACT~ SeuratPro~        173      53 0               A             g2    
+#>  6 TCTGATACA~ SeuratPro~         70      48 0               A             g1    
+#>  7 TGGTATCTA~ SeuratPro~         64      36 0               A             g1    
+#>  8 GCAGCTCTG~ SeuratPro~         72      45 0               A             g1    
+#>  9 GATATAACA~ SeuratPro~         52      36 0               A             g1    
+#> 10 AATGTTGAC~ SeuratPro~        100      41 0               A             g1    
+#> # i 70 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 
diff --git a/reference/return_arguments_of.html b/reference/return_arguments_of.html
index 60126d7..40ccba0 100644
--- a/reference/return_arguments_of.html
+++ b/reference/return_arguments_of.html
@@ -17,7 +17,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
diff --git a/reference/right_join.html b/reference/right_join.html index da9f7c0..6d48e89 100644 --- a/reference/right_join.html +++ b/reference/right_join.html @@ -43,7 +43,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1
@@ -249,22 +249,22 @@

Examples

slice(1)) #> tidySingleCellExperiment says: A data frame is returned for independent data analysis. #> Joining with `by = join_by(groups)` -#> # A SingleCellExperiment-tibble abstraction: 36 × 18 +#> # A SingleCellExperiment-tibble abstraction: 36 x 18 #> # Features=230 | Cells=36 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 ATGC… SeuratPro… 70 47 0 A g2 -#> 2 GAAC… SeuratPro… 87 50 1 B g2 -#> 3 TGAC… SeuratPro… 127 56 0 A g2 -#> 4 AGTC… SeuratPro… 173 53 0 A g2 -#> 5 AGGT… SeuratPro… 62 31 0 A g2 -#> 6 GGGT… SeuratPro… 101 41 0 A g2 -#> 7 CATG… SeuratPro… 51 26 0 A g2 -#> 8 TACG… SeuratPro… 99 45 0 A g2 -#> 9 GTAA… SeuratPro… 67 33 0 A g2 -#> 10 TACA… SeuratPro… 109 41 0 A g2 -#> # ℹ 26 more rows -#> # ℹ 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGC~ SeuratPro~ 70 47 0 A g2 +#> 2 GAAC~ SeuratPro~ 87 50 1 B g2 +#> 3 TGAC~ SeuratPro~ 127 56 0 A g2 +#> 4 AGTC~ SeuratPro~ 173 53 0 A g2 +#> 5 AGGT~ SeuratPro~ 62 31 0 A g2 +#> 6 GGGT~ SeuratPro~ 101 41 0 A g2 +#> 7 CATG~ SeuratPro~ 51 26 0 A g2 +#> 8 TACG~ SeuratPro~ 99 45 0 A g2 +#> 9 GTAA~ SeuratPro~ 67 33 0 A g2 +#> 10 TACA~ SeuratPro~ 109 41 0 A g2 +#> # i 26 more rows +#> # i 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # new_column <int>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, #> # PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl> diff --git a/reference/rowwise.html b/reference/rowwise.html index 9e5467a..b864e0e 100644 --- a/reference/rowwise.html +++ b/reference/rowwise.html @@ -21,7 +21,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 diff --git a/reference/sample_n.html b/reference/sample_n.html index dfa3963..9bf3274 100644 --- a/reference/sample_n.html +++ b/reference/sample_n.html @@ -34,7 +34,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -140,38 +140,38 @@

Value

Examples

data(pbmc_small)
 pbmc_small |> sample_n(50)
-#> # A SingleCellExperiment-tibble abstraction: 50 × 17
+#> # A SingleCellExperiment-tibble abstraction: 50 x 17
 #> # Features=230 | Cells=50 | Assays=counts, logcounts
 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#>  1 CTGC… SeuratPro…        146           47 0               A             g1    
-#>  2 GCGC… SeuratPro…        213           48 1               B             g2    
-#>  3 GAGT… SeuratPro…        527           47 0               A             g1    
-#>  4 CATA… SeuratPro…        286           68 0               A             g1    
-#>  5 AAGC… SeuratPro…        126           48 0               A             g1    
-#>  6 CTAA… SeuratPro…        246           59 0               A             g1    
-#>  7 GATA… SeuratPro…        328           72 1               B             g1    
-#>  8 ATCA… SeuratPro…        168           37 0               A             g2    
-#>  9 AATG… SeuratPro…        389           73 1               B             g1    
-#> 10 AGTC… SeuratPro…        173           53 0               A             g2    
-#> # ℹ 40 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 CTGC~ SeuratPro~        146           47 0               A             g1    
+#>  2 GCGC~ SeuratPro~        213           48 1               B             g2    
+#>  3 GAGT~ SeuratPro~        527           47 0               A             g1    
+#>  4 CATA~ SeuratPro~        286           68 0               A             g1    
+#>  5 AAGC~ SeuratPro~        126           48 0               A             g1    
+#>  6 CTAA~ SeuratPro~        246           59 0               A             g1    
+#>  7 GATA~ SeuratPro~        328           72 1               B             g1    
+#>  8 ATCA~ SeuratPro~        168           37 0               A             g2    
+#>  9 AATG~ SeuratPro~        389           73 1               B             g1    
+#> 10 AGTC~ SeuratPro~        173           53 0               A             g2    
+#> # i 40 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 pbmc_small |> sample_frac(0.1)
-#> # A SingleCellExperiment-tibble abstraction: 8 × 17
+#> # A SingleCellExperiment-tibble abstraction: 8 x 17
 #> # Features=230 | Cells=8 | Assays=counts, logcounts
 #>   .cell  orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
 #>   <chr>  <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
-#> 1 CCATC… SeuratPro…        224           50 1               B             g2    
-#> 2 CGGCA… SeuratPro…         94           55 0               A             g2    
-#> 3 TTACG… SeuratPro…        228           39 0               A             g1    
-#> 4 TACTC… SeuratPro…        156           48 0               A             g1    
-#> 5 CATGG… SeuratPro…         85           52 0               A             g1    
-#> 6 GAACC… SeuratPro…         87           50 1               B             g2    
-#> 7 ACAGG… SeuratPro…        151           59 0               A             g1    
-#> 8 GATAG… SeuratPro…        328           72 1               B             g1    
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#> 1 CCATC~ SeuratPro~        224           50 1               B             g2    
+#> 2 CGGCA~ SeuratPro~         94           55 0               A             g2    
+#> 3 TTACG~ SeuratPro~        228           39 0               A             g1    
+#> 4 TACTC~ SeuratPro~        156           48 0               A             g1    
+#> 5 CATGG~ SeuratPro~         85           52 0               A             g1    
+#> 6 GAACC~ SeuratPro~         87           50 1               B             g2    
+#> 7 ACAGG~ SeuratPro~        151           59 0               A             g1    
+#> 8 GATAG~ SeuratPro~        328           72 1               B             g1    
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 
diff --git a/reference/select.html b/reference/select.html
index 126745f..d3f8909 100644
--- a/reference/select.html
+++ b/reference/select.html
@@ -62,7 +62,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -330,21 +330,21 @@

Examples

data(pbmc_small)
 pbmc_small |> select(cell, orig.ident)
 #> Warning: tidySingleCellExperiment says: from version 1.3.1, the special columns including cell id (colnames(se)) has changed to ".cell". This dataset is returned with the old-style vocabulary (cell), however, we suggest to update your workflow to reflect the new vocabulary (.cell).
-#> # A SingleCellExperiment-tibble abstraction: 80 × 9
+#> # A SingleCellExperiment-tibble abstraction: 80 x 9
 #> # Features=230 | Cells=80 | Assays=counts, logcounts
 #>    cell           orig.ident     PC_1   PC_2   PC_3  PC_4   PC_5  tSNE_1  tSNE_2
 #>    <chr>          <fct>         <dbl>  <dbl>  <dbl> <dbl>  <dbl>   <dbl>   <dbl>
-#>  1 ATGCCAGAACGACT SeuratProj… -0.774  -0.900 -0.249 0.559  0.465   0.868  -8.10 
-#>  2 CATGGCCTGTGCAT SeuratProj… -0.0260 -0.347  0.665 0.418  0.585  -7.39   -8.77 
-#>  3 GAACCTGATGAACC SeuratProj… -0.457   0.180  1.32  2.01  -0.482 -28.2     0.241
-#>  4 TGACTGGATTCTCA SeuratProj… -0.812  -1.38  -1.00  0.139 -1.60   16.3   -11.2  
-#>  5 AGTCAGACTGCACA SeuratProj… -0.774  -0.900 -0.249 0.559  0.465   1.91  -11.2  
-#>  6 TCTGATACACGTGT SeuratProj… -0.774  -0.900 -0.249 0.559  0.465   3.15   -9.94 
-#>  7 TGGTATCTAAACAG SeuratProj… -0.460  -1.19  -0.312 0.716 -1.65   17.9    -9.90 
-#>  8 GCAGCTCTGTTTCT SeuratProj… -0.900  -0.388  0.693 0.404  0.536  -6.49   -8.39 
-#>  9 GATATAACACGCAT SeuratProj… -0.774  -0.900 -0.249 0.559  0.465   1.33   -9.68 
-#> 10 AATGTTGACAGTCA SeuratProj… -0.488  -1.16  -0.306 0.702 -1.47   17.0    -9.43 
-#> # ℹ 70 more rows
+#>  1 ATGCCAGAACGACT SeuratProj~ -0.774  -0.900 -0.249 0.559  0.465   0.868  -8.10 
+#>  2 CATGGCCTGTGCAT SeuratProj~ -0.0260 -0.347  0.665 0.418  0.585  -7.39   -8.77 
+#>  3 GAACCTGATGAACC SeuratProj~ -0.457   0.180  1.32  2.01  -0.482 -28.2     0.241
+#>  4 TGACTGGATTCTCA SeuratProj~ -0.812  -1.38  -1.00  0.139 -1.60   16.3   -11.2  
+#>  5 AGTCAGACTGCACA SeuratProj~ -0.774  -0.900 -0.249 0.559  0.465   1.91  -11.2  
+#>  6 TCTGATACACGTGT SeuratProj~ -0.774  -0.900 -0.249 0.559  0.465   3.15   -9.94 
+#>  7 TGGTATCTAAACAG SeuratProj~ -0.460  -1.19  -0.312 0.716 -1.65   17.9    -9.90 
+#>  8 GCAGCTCTGTTTCT SeuratProj~ -0.900  -0.388  0.693 0.404  0.536  -6.49   -8.39 
+#>  9 GATATAACACGCAT SeuratProj~ -0.774  -0.900 -0.249 0.559  0.465   1.33   -9.68 
+#> 10 AATGTTGACAGTCA SeuratProj~ -0.488  -1.16  -0.306 0.702 -1.47   17.0    -9.43 
+#> # i 70 more rows
 
 
diff --git a/reference/separate.html b/reference/separate.html index 86dde4f..ce76a55 100644 --- a/reference/separate.html +++ b/reference/separate.html @@ -24,7 +24,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -162,22 +162,22 @@

Examples

data(pbmc_small)
 un <- pbmc_small |> unite("new_col", c(orig.ident, groups))
 un |> separate(new_col, c("orig.ident", "groups"))
-#> # A SingleCellExperiment-tibble abstraction: 80 × 17
+#> # A SingleCellExperiment-tibble abstraction: 80 x 17
 #> # Features=230 | Cells=80 | Assays=counts, logcounts
 #>    .cell orig.ident groups nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents
 #>    <chr> <chr>      <chr>       <dbl>        <int> <fct>           <fct>        
-#>  1 ATGC… SeuratPro… g2             70           47 0               A            
-#>  2 CATG… SeuratPro… g1             85           52 0               A            
-#>  3 GAAC… SeuratPro… g2             87           50 1               B            
-#>  4 TGAC… SeuratPro… g2            127           56 0               A            
-#>  5 AGTC… SeuratPro… g2            173           53 0               A            
-#>  6 TCTG… SeuratPro… g1             70           48 0               A            
-#>  7 TGGT… SeuratPro… g1             64           36 0               A            
-#>  8 GCAG… SeuratPro… g1             72           45 0               A            
-#>  9 GATA… SeuratPro… g1             52           36 0               A            
-#> 10 AATG… SeuratPro… g1            100           41 0               A            
-#> # ℹ 70 more rows
-#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
+#>  1 ATGC~ SeuratPro~ g2             70           47 0               A            
+#>  2 CATG~ SeuratPro~ g1             85           52 0               A            
+#>  3 GAAC~ SeuratPro~ g2             87           50 1               B            
+#>  4 TGAC~ SeuratPro~ g2            127           56 0               A            
+#>  5 AGTC~ SeuratPro~ g2            173           53 0               A            
+#>  6 TCTG~ SeuratPro~ g1             70           48 0               A            
+#>  7 TGGT~ SeuratPro~ g1             64           36 0               A            
+#>  8 GCAG~ SeuratPro~ g1             72           45 0               A            
+#>  9 GATA~ SeuratPro~ g1             52           36 0               A            
+#> 10 AATG~ SeuratPro~ g1            100           41 0               A            
+#> # i 70 more rows
+#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
 #> #   tSNE_2 <dbl>
 
diff --git a/reference/slice.html b/reference/slice.html
index 0e0c18b..de968bb 100644
--- a/reference/slice.html
+++ b/reference/slice.html
@@ -28,7 +28,7 @@
       
       
         tidySingleCellExperiment
-        1.13.3
+        1.15.1
       
     
@@ -220,7 +220,7 @@

Methods

These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

-

Methods available in currently loaded packages:

  • slice(): (ANY, integer, numeric, Rle, RleList, XDouble, XInteger), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) +

    Methods available in currently loaded packages:

    • slice(): (ANY, Rle, RleList, XDouble, XInteger, integer, numeric), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) .

    • slice_head(): dbplyr (tbl_lazy), dplyr (data.frame), tidySingleCellExperiment (SingleCellExperiment) .

    • @@ -235,7 +235,7 @@

      Methods

    These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

    -

    Methods available in currently loaded packages:

    • slice(): (ANY, integer, numeric, Rle, RleList, XDouble, XInteger), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) +

      Methods available in currently loaded packages:

      • slice(): (ANY, Rle, RleList, XDouble, XInteger, integer, numeric), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) .

      • slice_head(): dbplyr (tbl_lazy), dplyr (data.frame), tidySingleCellExperiment (SingleCellExperiment) .

      • @@ -250,7 +250,7 @@

        Methods

      These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

      -

      Methods available in currently loaded packages:

      • slice(): (ANY, integer, numeric, Rle, RleList, XDouble, XInteger), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) +

        Methods available in currently loaded packages:

        • slice(): (ANY, Rle, RleList, XDouble, XInteger, integer, numeric), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) .

        • slice_head(): dbplyr (tbl_lazy), dplyr (data.frame), tidySingleCellExperiment (SingleCellExperiment) .

        • @@ -265,7 +265,7 @@

          Methods

        These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

        -

        Methods available in currently loaded packages:

        • slice(): (ANY, integer, numeric, Rle, RleList, XDouble, XInteger), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) +

          Methods available in currently loaded packages:

          • slice(): (ANY, Rle, RleList, XDouble, XInteger, integer, numeric), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) .

          • slice_head(): dbplyr (tbl_lazy), dplyr (data.frame), tidySingleCellExperiment (SingleCellExperiment) .

          • @@ -280,7 +280,7 @@

            Methods

          These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

          -

          Methods available in currently loaded packages:

          • slice(): (ANY, integer, numeric, Rle, RleList, XDouble, XInteger), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) +

            Methods available in currently loaded packages:

            • slice(): (ANY, Rle, RleList, XDouble, XInteger, integer, numeric), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) .

            • slice_head(): dbplyr (tbl_lazy), dplyr (data.frame), tidySingleCellExperiment (SingleCellExperiment) .

            • @@ -295,7 +295,7 @@

              Methods

            These function are generics, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

            -

            Methods available in currently loaded packages:

            • slice(): (ANY, integer, numeric, Rle, RleList, XDouble, XInteger), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) +

              Methods available in currently loaded packages:

              • slice(): (ANY, Rle, RleList, XDouble, XInteger, integer, numeric), dbplyr (tbl_lazy), dplyr (data.frame), plotly (plotly), tidySingleCellExperiment (SingleCellExperiment) .

              • slice_head(): dbplyr (tbl_lazy), dplyr (data.frame), tidySingleCellExperiment (SingleCellExperiment) .

              • @@ -321,71 +321,71 @@

                See also

                Examples

                data(pbmc_small)
                 pbmc_small |> slice(1)
                -#> # A SingleCellExperiment-tibble abstraction: 1 × 17
                +#> # A SingleCellExperiment-tibble abstraction: 1 x 17
                 #> # Features=230 | Cells=1 | Assays=counts, logcounts
                 #>   .cell  orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
                 #>   <chr>  <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
                -#> 1 ATGCC… SeuratPro…         70           47 0               A             g2    
                -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                +#> 1 ATGCC~ SeuratPro~         70           47 0               A             g2    
                +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
                 #> #   tSNE_2 <dbl>
                 
                 data(pbmc_small)
                 pbmc_small |> slice_sample(n=1)
                -#> # A SingleCellExperiment-tibble abstraction: 1 × 17
                +#> # A SingleCellExperiment-tibble abstraction: 1 x 17
                 #> # Features=230 | Cells=1 | Assays=counts, logcounts
                 #>   .cell  orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
                 #>   <chr>  <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
                -#> 1 GACAT… SeuratPro…        872           96 1               B             g1    
                -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                +#> 1 GACAT~ SeuratPro~        872           96 1               B             g1    
                +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
                 #> #   tSNE_2 <dbl>
                 pbmc_small |> slice_sample(prop=0.1)
                -#> # A SingleCellExperiment-tibble abstraction: 8 × 17
                +#> # A SingleCellExperiment-tibble abstraction: 8 x 17
                 #> # Features=230 | Cells=8 | Assays=counts, logcounts
                 #>   .cell  orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
                 #>   <chr>  <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
                -#> 1 TCTGA… SeuratPro…         70           48 0               A             g1    
                -#> 2 ATAGG… SeuratPro…        406           74 1               B             g1    
                -#> 3 CATCA… SeuratPro…         79           43 0               A             g1    
                -#> 4 CATGG… SeuratPro…         85           52 0               A             g1    
                -#> 5 TTTAG… SeuratPro…        462           86 1               B             g1    
                -#> 6 CATTA… SeuratPro…        316           65 0               A             g2    
                -#> 7 GACAT… SeuratPro…        872           96 1               B             g1    
                -#> 8 CCATC… SeuratPro…        224           50 1               B             g2    
                -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                +#> 1 TCTGA~ SeuratPro~         70           48 0               A             g1    
                +#> 2 ATAGG~ SeuratPro~        406           74 1               B             g1    
                +#> 3 CATCA~ SeuratPro~         79           43 0               A             g1    
                +#> 4 CATGG~ SeuratPro~         85           52 0               A             g1    
                +#> 5 TTTAG~ SeuratPro~        462           86 1               B             g1    
                +#> 6 CATTA~ SeuratPro~        316           65 0               A             g2    
                +#> 7 GACAT~ SeuratPro~        872           96 1               B             g1    
                +#> 8 CCATC~ SeuratPro~        224           50 1               B             g2    
                +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
                 #> #   tSNE_2 <dbl>
                 
                 data(pbmc_small)
                 # First rows based on existing order
                 pbmc_small |> slice_head(n=5)
                -#> # A SingleCellExperiment-tibble abstraction: 5 × 17
                +#> # A SingleCellExperiment-tibble abstraction: 5 x 17
                 #> # Features=230 | Cells=5 | Assays=counts, logcounts
                 #>   .cell  orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
                 #>   <chr>  <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
                -#> 1 ATGCC… SeuratPro…         70           47 0               A             g2    
                -#> 2 CATGG… SeuratPro…         85           52 0               A             g1    
                -#> 3 GAACC… SeuratPro…         87           50 1               B             g2    
                -#> 4 TGACT… SeuratPro…        127           56 0               A             g2    
                -#> 5 AGTCA… SeuratPro…        173           53 0               A             g2    
                -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                +#> 1 ATGCC~ SeuratPro~         70           47 0               A             g2    
                +#> 2 CATGG~ SeuratPro~         85           52 0               A             g1    
                +#> 3 GAACC~ SeuratPro~         87           50 1               B             g2    
                +#> 4 TGACT~ SeuratPro~        127           56 0               A             g2    
                +#> 5 AGTCA~ SeuratPro~        173           53 0               A             g2    
                +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
                 #> #   tSNE_2 <dbl>
                 
                 data(pbmc_small)
                 # First rows based on existing order
                 pbmc_small |> slice_tail(n=5)
                -#> # A SingleCellExperiment-tibble abstraction: 5 × 17
                +#> # A SingleCellExperiment-tibble abstraction: 5 x 17
                 #> # Features=230 | Cells=5 | Assays=counts, logcounts
                 #>   .cell  orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
                 #>   <chr>  <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
                -#> 1 GAGTT… SeuratPro…        527           47 0               A             g1    
                -#> 2 GACGC… SeuratPro…        202           30 0               A             g2    
                -#> 3 AGTCT… SeuratPro…        157           29 0               A             g1    
                -#> 4 GGAAC… SeuratPro…        150           30 0               A             g2    
                -#> 5 CTTGA… SeuratPro…        233           76 1               B             g1    
                -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                +#> 1 GAGTT~ SeuratPro~        527           47 0               A             g1    
                +#> 2 GACGC~ SeuratPro~        202           30 0               A             g2    
                +#> 3 AGTCT~ SeuratPro~        157           29 0               A             g1    
                +#> 4 GGAAC~ SeuratPro~        150           30 0               A             g2    
                +#> 5 CTTGA~ SeuratPro~        233           76 1               B             g1    
                +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
                 #> #   tSNE_2 <dbl>
                 
                @@ -393,90 +393,90 @@ 

                Examples

                # Rows with minimum and maximum values of a metadata variable pbmc_small |> slice_min(nFeature_RNA, n=5) -#> # A SingleCellExperiment-tibble abstraction: 5 × 17 +#> # A SingleCellExperiment-tibble abstraction: 5 x 17 #> # Features=230 | Cells=5 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 CATGA… SeuratPro… 51 26 0 A g2 -#> 2 GGCAT… SeuratPro… 172 29 0 A g1 -#> 3 AGTCT… SeuratPro… 157 29 0 A g1 -#> 4 GACGC… SeuratPro… 202 30 0 A g2 -#> 5 GGAAC… SeuratPro… 150 30 0 A g2 -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 CATGA~ SeuratPro~ 51 26 0 A g2 +#> 2 GGCAT~ SeuratPro~ 172 29 0 A g1 +#> 3 AGTCT~ SeuratPro~ 157 29 0 A g1 +#> 4 GACGC~ SeuratPro~ 202 30 0 A g2 +#> 5 GGAAC~ SeuratPro~ 150 30 0 A g2 +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> # slice_min() and slice_max() may return more rows than requested # in the presence of ties. pbmc_small |> slice_min(nFeature_RNA, n=2) -#> # A SingleCellExperiment-tibble abstraction: 3 × 17 +#> # A SingleCellExperiment-tibble abstraction: 3 x 17 #> # Features=230 | Cells=3 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 CATGA… SeuratPro… 51 26 0 A g2 -#> 2 GGCAT… SeuratPro… 172 29 0 A g1 -#> 3 AGTCT… SeuratPro… 157 29 0 A g1 -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 CATGA~ SeuratPro~ 51 26 0 A g2 +#> 2 GGCAT~ SeuratPro~ 172 29 0 A g1 +#> 3 AGTCT~ SeuratPro~ 157 29 0 A g1 +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> # Use with_ties=FALSE to return exactly n matches pbmc_small |> slice_min(nFeature_RNA, n=2, with_ties=FALSE) -#> # A SingleCellExperiment-tibble abstraction: 2 × 17 +#> # A SingleCellExperiment-tibble abstraction: 2 x 17 #> # Features=230 | Cells=2 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 CATGA… SeuratPro… 51 26 0 A g2 -#> 2 GGCAT… SeuratPro… 172 29 0 A g1 -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 CATGA~ SeuratPro~ 51 26 0 A g2 +#> 2 GGCAT~ SeuratPro~ 172 29 0 A g1 +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> # Or use additional variables to break the tie: pbmc_small |> slice_min(tibble::tibble(nFeature_RNA, nCount_RNA), n=2) -#> # A SingleCellExperiment-tibble abstraction: 2 × 17 +#> # A SingleCellExperiment-tibble abstraction: 2 x 17 #> # Features=230 | Cells=2 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 CATGA… SeuratPro… 51 26 0 A g2 -#> 2 AGTCT… SeuratPro… 157 29 0 A g1 -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 CATGA~ SeuratPro~ 51 26 0 A g2 +#> 2 AGTCT~ SeuratPro~ 157 29 0 A g1 +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> # Use by for group-wise operations pbmc_small |> slice_min(nFeature_RNA, n=5, by=groups) -#> # A SingleCellExperiment-tibble abstraction: 10 × 17 +#> # A SingleCellExperiment-tibble abstraction: 10 x 17 #> # Features=230 | Cells=10 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 CATG… SeuratPro… 51 26 0 A g2 -#> 2 GACG… SeuratPro… 202 30 0 A g2 -#> 3 GGAA… SeuratPro… 150 30 0 A g2 -#> 4 AGGT… SeuratPro… 62 31 0 A g2 -#> 5 CTTC… SeuratPro… 41 32 0 A g2 -#> 6 GGCA… SeuratPro… 172 29 0 A g1 -#> 7 AGTC… SeuratPro… 157 29 0 A g1 -#> 8 TGGT… SeuratPro… 64 36 0 A g1 -#> 9 GATA… SeuratPro… 52 36 0 A g1 -#> 10 TTAC… SeuratPro… 228 39 0 A g1 -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 CATG~ SeuratPro~ 51 26 0 A g2 +#> 2 GACG~ SeuratPro~ 202 30 0 A g2 +#> 3 GGAA~ SeuratPro~ 150 30 0 A g2 +#> 4 AGGT~ SeuratPro~ 62 31 0 A g2 +#> 5 CTTC~ SeuratPro~ 41 32 0 A g2 +#> 6 GGCA~ SeuratPro~ 172 29 0 A g1 +#> 7 AGTC~ SeuratPro~ 157 29 0 A g1 +#> 8 TGGT~ SeuratPro~ 64 36 0 A g1 +#> 9 GATA~ SeuratPro~ 52 36 0 A g1 +#> 10 TTAC~ SeuratPro~ 228 39 0 A g1 +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> data(pbmc_small) # Rows with minimum and maximum values of a metadata variable pbmc_small |> slice_max(nFeature_RNA, n=5) -#> # A SingleCellExperiment-tibble abstraction: 5 × 17 +#> # A SingleCellExperiment-tibble abstraction: 5 x 17 #> # Features=230 | Cells=5 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups #> <chr> <fct> <dbl> <int> <fct> <fct> <chr> -#> 1 GACAT… SeuratPro… 872 96 1 B g1 -#> 2 ACGTG… SeuratPro… 709 94 1 B g2 -#> 3 TTGAG… SeuratPro… 787 88 0 A g1 -#> 4 TTTAG… SeuratPro… 462 86 1 B g1 -#> 5 ATTGT… SeuratPro… 745 84 1 B g2 -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 GACAT~ SeuratPro~ 872 96 1 B g1 +#> 2 ACGTG~ SeuratPro~ 709 94 1 B g2 +#> 3 TTGAG~ SeuratPro~ 787 88 0 A g1 +#> 4 TTTAG~ SeuratPro~ 462 86 1 B g1 +#> 5 ATTGT~ SeuratPro~ 745 84 1 B g2 +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> diff --git a/reference/summarise.html b/reference/summarise.html index e4b2ed7..d00ab32 100644 --- a/reference/summarise.html +++ b/reference/summarise.html @@ -22,7 +22,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1
                @@ -160,7 +160,7 @@

                Examples

                data(pbmc_small)
                 pbmc_small |> summarise(mean(nCount_RNA))
                 #> tidySingleCellExperiment says: A data frame is returned for independent data analysis.
                -#> # A tibble: 1 × 1
                +#> # A tibble: 1 x 1
                 #>   `mean(nCount_RNA)`
                 #>                <dbl>
                 #> 1               245.
                diff --git a/reference/tbl_format_header.html b/reference/tbl_format_header.html
                index 7344256..cdf1f07 100644
                --- a/reference/tbl_format_header.html
                +++ b/reference/tbl_format_header.html
                @@ -26,7 +26,7 @@
                       
                       
                         tidySingleCellExperiment
                -        1.13.3
                +        1.15.1
                       
                     
                diff --git a/reference/tidy.html b/reference/tidy.html index f24a3ae..f7e2f1e 100644 --- a/reference/tidy.html +++ b/reference/tidy.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -83,22 +83,22 @@

                Value

                Examples

                data(pbmc_small)
                 pbmc_small
                -#> # A SingleCellExperiment-tibble abstraction: 80 × 17
                +#> # A SingleCellExperiment-tibble abstraction: 80 x 17
                 #> # Features=230 | Cells=80 | Assays=counts, logcounts
                 #>    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
                 #>    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
                -#>  1 ATGC… SeuratPro…         70           47 0               A             g2    
                -#>  2 CATG… SeuratPro…         85           52 0               A             g1    
                -#>  3 GAAC… SeuratPro…         87           50 1               B             g2    
                -#>  4 TGAC… SeuratPro…        127           56 0               A             g2    
                -#>  5 AGTC… SeuratPro…        173           53 0               A             g2    
                -#>  6 TCTG… SeuratPro…         70           48 0               A             g1    
                -#>  7 TGGT… SeuratPro…         64           36 0               A             g1    
                -#>  8 GCAG… SeuratPro…         72           45 0               A             g1    
                -#>  9 GATA… SeuratPro…         52           36 0               A             g1    
                -#> 10 AATG… SeuratPro…        100           41 0               A             g1    
                -#> # ℹ 70 more rows
                -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                +#>  1 ATGC~ SeuratPro~         70           47 0               A             g2    
                +#>  2 CATG~ SeuratPro~         85           52 0               A             g1    
                +#>  3 GAAC~ SeuratPro~         87           50 1               B             g2    
                +#>  4 TGAC~ SeuratPro~        127           56 0               A             g2    
                +#>  5 AGTC~ SeuratPro~        173           53 0               A             g2    
                +#>  6 TCTG~ SeuratPro~         70           48 0               A             g1    
                +#>  7 TGGT~ SeuratPro~         64           36 0               A             g1    
                +#>  8 GCAG~ SeuratPro~         72           45 0               A             g1    
                +#>  9 GATA~ SeuratPro~         52           36 0               A             g1    
                +#> 10 AATG~ SeuratPro~        100           41 0               A             g1    
                +#> # i 70 more rows
                +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>,
                 #> #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
                 #> #   tSNE_2 <dbl>
                 
                diff --git a/reference/unite.html b/reference/unite.html
                index 30ce1e9..b5f1d01 100644
                --- a/reference/unite.html
                +++ b/reference/unite.html
                @@ -17,7 +17,7 @@
                       
                       
                         tidySingleCellExperiment
                -        1.13.3
                +        1.15.1
                       
                     
                @@ -114,22 +114,22 @@

                Examples

                pbmc_small |> unite( col="new_col", c("orig.ident", "groups")) -#> # A SingleCellExperiment-tibble abstraction: 80 × 16 +#> # A SingleCellExperiment-tibble abstraction: 80 x 16 #> # Features=230 | Cells=80 | Assays=counts, logcounts #> .cell new_col nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents #> <chr> <chr> <dbl> <int> <fct> <fct> -#> 1 ATGCCAGAACGACT SeuratP… 70 47 0 A -#> 2 CATGGCCTGTGCAT SeuratP… 85 52 0 A -#> 3 GAACCTGATGAACC SeuratP… 87 50 1 B -#> 4 TGACTGGATTCTCA SeuratP… 127 56 0 A -#> 5 AGTCAGACTGCACA SeuratP… 173 53 0 A -#> 6 TCTGATACACGTGT SeuratP… 70 48 0 A -#> 7 TGGTATCTAAACAG SeuratP… 64 36 0 A -#> 8 GCAGCTCTGTTTCT SeuratP… 72 45 0 A -#> 9 GATATAACACGCAT SeuratP… 52 36 0 A -#> 10 AATGTTGACAGTCA SeuratP… 100 41 0 A -#> # ℹ 70 more rows -#> # ℹ 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGCCAGAACGACT SeuratP~ 70 47 0 A +#> 2 CATGGCCTGTGCAT SeuratP~ 85 52 0 A +#> 3 GAACCTGATGAACC SeuratP~ 87 50 1 B +#> 4 TGACTGGATTCTCA SeuratP~ 127 56 0 A +#> 5 AGTCAGACTGCACA SeuratP~ 173 53 0 A +#> 6 TCTGATACACGTGT SeuratP~ 70 48 0 A +#> 7 TGGTATCTAAACAG SeuratP~ 64 36 0 A +#> 8 GCAGCTCTGTTTCT SeuratP~ 72 45 0 A +#> 9 GATATAACACGCAT SeuratP~ 52 36 0 A +#> 10 AATGTTGACAGTCA SeuratP~ 100 41 0 A +#> # i 70 more rows +#> # i 10 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, #> # tSNE_2 <dbl> diff --git a/reference/unnest.html b/reference/unnest.html index 31df69a..82b8da3 100644 --- a/reference/unnest.html +++ b/reference/unnest.html @@ -17,7 +17,7 @@ tidySingleCellExperiment - 1.13.3 + 1.15.1 @@ -197,22 +197,22 @@

                Examples

                pbmc_small |> nest(data=-groups) |> unnest(data) -#> # A SingleCellExperiment-tibble abstraction: 80 × 17 +#> # A SingleCellExperiment-tibble abstraction: 80 x 17 #> # Features=230 | Cells=80 | Assays=counts, logcounts #> .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents #> <chr> <fct> <dbl> <int> <fct> <fct> -#> 1 ATGCCAGAACG… SeuratPro… 70 47 0 A -#> 2 GAACCTGATGA… SeuratPro… 87 50 1 B -#> 3 TGACTGGATTC… SeuratPro… 127 56 0 A -#> 4 AGTCAGACTGC… SeuratPro… 173 53 0 A -#> 5 AGGTCATGAGT… SeuratPro… 62 31 0 A -#> 6 GGGTAACTCTA… SeuratPro… 101 41 0 A -#> 7 CATGAGACACG… SeuratPro… 51 26 0 A -#> 8 TACGCCACTCC… SeuratPro… 99 45 0 A -#> 9 GTAAGCACTCA… SeuratPro… 67 33 0 A -#> 10 TACATCACGCT… SeuratPro… 109 41 0 A -#> # ℹ 70 more rows -#> # ℹ 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, +#> 1 ATGCCAGAACG~ SeuratPro~ 70 47 0 A +#> 2 GAACCTGATGA~ SeuratPro~ 87 50 1 B +#> 3 TGACTGGATTC~ SeuratPro~ 127 56 0 A +#> 4 AGTCAGACTGC~ SeuratPro~ 173 53 0 A +#> 5 AGGTCATGAGT~ SeuratPro~ 62 31 0 A +#> 6 GGGTAACTCTA~ SeuratPro~ 101 41 0 A +#> 7 CATGAGACACG~ SeuratPro~ 51 26 0 A +#> 8 TACGCCACTCC~ SeuratPro~ 99 45 0 A +#> 9 GTAAGCACTCA~ SeuratPro~ 67 33 0 A +#> 10 TACATCACGCT~ SeuratPro~ 109 41 0 A +#> # i 70 more rows +#> # i 11 more variables: RNA_snn_res.1 <fct>, file <chr>, ident <fct>, #> # groups <chr>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, #> # tSNE_1 <dbl>, tSNE_2 <dbl>