-
Notifications
You must be signed in to change notification settings - Fork 0
/
general_spin_ids.tex
291 lines (250 loc) · 14.4 KB
/
general_spin_ids.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
\input{header.tex}
\newcommand{\sigdot}[1]{ \gv{\sigma} \hspace{-2pt} \cdot \hspace{-2pt} \v{#1} \,}
\newcommand{\sigdotg}[1]{ \gv{\sigma} \hspace{-2pt} \cdot \hspace{-2pt} \gv{#1} \,}
\newcommand{\dotprod}[2]{ \v{#1} \hspace{-2pt} \cdot \hspace{-2pt} \v{#2} \,}
\newcommand{\beqa}{\begin{eqnarray*} }
\newcommand{\eeqa}{\end{eqnarray*} }
\newcommand{\ubar}{\bar{u}'}
\usepackage{cancel}
\title{General spin identities}
\author{}
\begin{document}
\section{Derivation of v spinor}
In the chiral representation, at rest, we expect
\[ v = \begin{pmatrix} \xi_0 \\ -\xi_0 \end{pmatrix} \]
Boosting by some rapidity $\phi$, we know how the upper/lower components of this transform.
\[ v = \begin{pmatrix} e^{ \frac{\gv{\Sigma} \cdot \gv{\phi}}{2} } \xi_0 \\ -e^{ \frac{\gv{\Sigma} \cdot \gv{\phi}}{2} } \xi_0 \end{pmatrix} \]
If in the chiral representation there exists a spinor $\Psi = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$, then in the standard representation it becomes
\beqa
\Psi &=& \begin{pmatrix} \varphi \\ \chi \end{pmatrix} \\
\varphi &=& \frac{1}{2}( \eta_1 + \eta_2 ) \\
\chi &=& \frac{1}{2} ( \eta_1 - \eta_2) \\
\eeqa
For our v spinor, this means that, in the standard representation
\beqa
v &=& \begin{pmatrix} \sinh{\frac{\gv{\Sigma} \cdot \gv{\phi}}{2}} \xi_0 \\
\cosh{\frac{\gv{\Sigma} \cdot \gv{\phi}}{2} } \xi_0 \end{pmatrix}
\eeqa
To first order $ \phi_i = \frac{p_i}{m}$, so v up to linear order in p is
\beqa
v &=& \begin{pmatrix} \frac{ \gv{\Sigma} \cdot \v{p} }{2m} \xi_0\\
\xi_0 \end{pmatrix}
\eeqa
\section{Khriplovich spinors to second order}
We might need lower component to second order.
Define $\xi = exp(\frac{\v{\Sigma} \cdot \v{\phi}}{2} )\xi_0$ and $\eta = exp(-\frac{\v{\Sigma} \cdot \v{\phi}}{2} )\xi_0$.
This is obtained from boosting the rest frame spinor $\xi_0$. Parameter $\v{\phi}$ points along $\v{v}$ and has magnitude $\tanh \phi = v$
We now define $\varphi = \frac{1}{2} ( \xi + \eta)$ and $\chi = \frac{1}{2} ( \xi - \eta)$ It then follows that
\begin{eqnarray*}
\varphi &=& \cosh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \xi_0 \\
\chi &=& \sinh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \xi_0 \\
\end{eqnarray*}
Express the spinors in terms of the momentum and not the boost parameter. We only need terms to second order.
\begin{eqnarray*}
\tanh \phi &=& v \\
\phi - \frac{\phi^3}{3} &=& v \\
\phi &=& v +\frac{v^3}{3} \\
\phi_i &=& v_i \left( 1 + \frac{v^2}{3} \right ) \\
p &=& mv\gamma \\
v_i &=& \frac{p_i}{m} \left( 1 -\frac{p^2}{2m^2} \right )
\end{eqnarray*}
So
\begin{eqnarray*}
\phi_i &=& \frac{p_i}{m}\left( 1 - \frac{p^2}{2m^2} \right ) \left ( 1 + \frac{p^2}{3m^2} \right ) \\
&=& \frac{p_i}{m}\left( 1 - \frac{p^2}{6m^2} \right )
\end{eqnarray*}
Finally
\begin{eqnarray*}
\chi &=& \sqrt{\frac{m}{E}} \sinh( \frac{\v{\Sigma} \cdot \v{\phi}}{2} ) \xi_0 \\
&=& \left( 1 - \frac{p^2}{4m^2} \right ) \left(
\frac{\v{\Sigma} \cdot \v{\phi}}{2} + \frac{(\v{\Sigma} \cdot \v{\phi})^3}{3!2^3 }
\right) \xi_0 \\
&=& \frac{\v{\Sigma} \cdot \v{p}}{2m} \left ( 1 - \frac{p^2}{4m^2} - \frac{p^2}{6m^2} + \frac{(\v{\Sigma} \cdot \v{p})^2}{24m^2} \right )\xi_0 \\
&=& \frac{\v{\Sigma} \cdot \v{p}}{2m} \left ( 1 - \frac{5p^2}{12m^2} + \frac{(\v{\Sigma} \cdot \v{p})^2}{24m^2} \right )\xi_0
\end{eqnarray*}
\section*{Transformation under boost}
Using the definitions above we can derive the transformation of $\phi$ and $\chi$ under infinitesimal boost.
We'll consider the transformation of these objects under an infinitesimal boost $\gv{\phi} \to \gv{\phi} + \gv{\eta}$, considering for now only boosts parallel to the orientation $\gv{\phi}$ of the spinors. For this type of transformation, we only need to first order in $\eta$, and $[\Sigma \cdot \eta, \Sigma \cdot \phi]=0$. (The last identity is because $\v{\eta}$ is proportional to $\phi$.)
t
\beqa
\varphi &=& \cosh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \xi_0 \\
\chi &=& \sinh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \xi_0 \\
\varphi' &=& \cosh{ \frac{\v{\Sigma} \cdot (\v{\phi+\eta})}{2} } \xi_0 \\
&=& ( \cosh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \cosh{\frac{\v{\Sigma} \cdot \v{\eta}}{2} }
+ \sinh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \sinh{\frac{\v{\Sigma} \cdot \v{\eta}}{2} }
) \xi_0 \\
&=& ( \cosh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } + \sinh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \frac{\v{\Sigma} \cdot \v{\eta}}{2} ) \xi_0 \\
&=& \varphi + \frac{\v{\Sigma} \cdot \v{\eta}}{2} \chi \\
\chi' &=& \sinh{ \frac{\v{\Sigma} \cdot (\v{\phi+\eta})}{2} } \xi_0 \\
&=& ( \cosh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \sinh{\frac{\v{\Sigma} \cdot \v{\eta}}{2} }
+ \sinh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \cosh{\frac{\v{\Sigma} \cdot \v{\eta}}{2} }
) \xi_0 \\
&=& ( \cosh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} } \frac{\v{\Sigma} \cdot \v{\eta}}{2}
+ \sinh{ \frac{\v{\Sigma} \cdot \v{\phi}}{2} }
) \xi_0 \\
&=& \chi + \frac{\v{\Sigma} \cdot \v{\eta}}{2} \varphi \\
\eeqa
So we can write that
\beqa
\Psi &\to& \Psi' = \Psi + \frac{\eta_i }{2} \begin{pmatrix} 0 & \Sigma_i \\ \Sigma_i & 0 \end{pmatrix}\Psi
\eeqa
If we define $ \Gamma^i = \begin{pmatrix} 0 & \Sigma_i \\ -\Sigma_i & 0 \end{pmatrix}$, then
\beqa
\Psi &\to& \Psi' = \Psi + \frac{\eta_i }{2} \Gamma^0 \Gamma_i \Psi \\
\bar{\Psi} &\to& \bar{\Psi'} = \bar{\Psi} + \frac{\eta_i }{2} (\Gamma^0 \Gamma_i \Psi)^\dagger \Gamma^0 \\
&=& \bar{\Psi} + \frac{\eta_i }{2} \Psi^\dagger {\Gamma^i}^\dagger {\Gamma^0}^\dagger \Gamma^0 \\
&=& \bar{\Psi} - \frac{\eta_i }{2} \bar{\Psi} \Gamma^0 \Gamma^i
\eeqa
\subsection*{Transforms of bilinears}
Let's investigate the transformation properties of three bilinears: $\bar{\Psi}\Psi$, $\bar{\Psi}\Gamma^\mu\Psi$, and $\bar{\Psi} [\Gamma^\mu, \Gamma^\nu] \Psi$.
\beqa
\bar{\Psi}\Psi &\to& \bar{\Psi}\Psi + \frac{\eta_i}{2} [ \bar{\Psi} \Gamma^0 \Gamma_i \Psi - \bar{\Psi} \Gamma^0 \Gamma^i \Psi]\\
&=& \bar{\Psi}\Psi \\
\eeqa
So the term $\bar{\Psi}\Psi$ is a Lorentz invariant.
Now consider the terms $\bar{\Psi}\Gamma^0\Psi$ and $\bar{\Psi}\Gamma^i\Psi$. Do they act like the components of a lorentz vector? We can use the relation $\{ \Gamma^0, \Gamma^i\} = 0$.
\beqa
\bar{\Psi} \Gamma^0 \Psi
&\to& \bar{\Psi} \Gamma^0 \Psi + \frac{\eta_j}{2} \left (
\bar{\Psi} \Gamma^0 \Gamma^0 \Gamma^j \Psi - \bar{\Psi} \Gamma^0 \Gamma^j \Gamma^0 \Psi
\right ) \\
&=& \bar{\Psi} \Gamma^0 \Psi + \frac{\eta_j}{2} \left (
\bar{\Psi} \Gamma^0 \Gamma^0 \Gamma^j \Psi + \bar{\Psi} \Gamma^0 \Gamma^0 \Gamma^j \Psi
\right ) \\
&=& \bar{\Psi} \Gamma^0 \Psi + \eta_j \bar{\Psi} \Gamma^j \Psi \\
\bar{\Psi} \Gamma^i \Psi &\to& \bar{\Psi} \Gamma^i \Psi + \frac{\eta_j}{2} \left (
\bar{\Psi} \Gamma^i \Gamma^0 \Gamma^j \Psi - \bar{\Psi} \Gamma^0 \Gamma^j \Gamma^i \Psi
\right ) \\
&=& \bar{\Psi} \Gamma^i \Psi - \frac{\eta_j}{2} \left (
\bar{\Psi} \Gamma^0 \Gamma^i \Gamma^j \Psi +\bar{\Psi} \Gamma^0 \Gamma^j \Gamma^i \Psi
\right ) \\
&=& \bar{\Psi} \Gamma^i \Psi - \frac{\eta_j}{2} \bar{\Psi} \Gamma^0 \{\Gamma^i, \Gamma^j\} \Psi \\
\eeqa
What we expect is that, for a lorentz vector $V^\mu$, the transformation is $V^0 \to V^0 + \eta_j V^j$ and $V^i \to V^i + \eta_i V^0$. For spin-$\frac{1}{2}$, $\{\Gamma^i, \Gamma^j\} = -2\delta_{ij}$, and so the bilinear transforms correctly. But for higher spin particles, no such simplification exists.
\subsection*{Tensor bilinear}
A second rank tensor $T^{\mu\nu}$ should transform as the product of two vectors. Under a boost of $\gv{\eta}$,
\beqa
T^{00} &\to&
T^{00} + \eta_i T^{i0} + \eta_i T^{0i} \\
T^{0i} &\to& T^{0i} + \eta_i T^{00} + \eta_j T^{ji} \\
T^{ij} &\to& T^{ij} + \eta_i T^{0j} + \eta_j T^{i0} \\
\eeqa
The third bilinear to consider is $\bar{\Psi} \sigma^{\mu\nu} \Psi$. $\sigma^{\mu\nu}$ is proportional to $[\Gamma^\mu, \Gamma^\nu]$. Since it's antisymmetric, we need only consider two special cases.
\beqa
[\Gamma^i, \Gamma^j] &=& -4i\epsilon_{ijk}\begin{pmatrix}S_k & 0 \\ 0 & S_k \end{pmatrix} \\
{}[\Gamma^i, \Gamma^0] &=& 2\Gamma^i\Gamma^0 \\
\eeqa
\beqa
\bar{\Psi} [\Gamma^0, \Gamma^i] \Psi
&=& 2 \bar{\Psi} \Gamma^0 \Gamma^i \Psi \\
&\to& 2 \bar{\Psi} \Gamma^0 \Gamma^i \Psi
+ \eta_j \bar{\Psi} (\Gamma^0 \Gamma^i \Gamma^0 \Gamma^j - \Gamma^0 \Gamma^j \Gamma^0 \Gamma^i) \Psi \\
&\to& 2 \bar{\Psi} \Gamma^0 \Gamma^i \Psi
+ \eta_j \bar{\Psi} (- \Gamma^i \Gamma^j + \Gamma^j \Gamma^i) \Psi \\
&=& \bar{\Psi} [\Gamma^0, \Gamma^i] \Psi + \eta_j \bar{\Psi} [\Gamma^j, \Gamma^i] \Psi \\
\eeqa
\beqa
\bar{\Psi} [\Gamma^i, \Gamma^j] \Psi
&=& -4i\epsilon_{ijk}\bar{\Psi} \begin{pmatrix}S_k & 0 \\ 0 & S_k \end{pmatrix} \Psi \\
&\to& \bar{\Psi} [\Gamma^i, \Gamma^j] \Psi
+2i\epsilon_{ijk} \eta_\ell \bar{\Psi} \left\{ \Gamma^0 \Gamma^\ell \begin{pmatrix}S_k & 0 \\ 0 & S_k \end{pmatrix} - \begin{pmatrix}S_k & 0 \\ 0 & S_k \end{pmatrix} \Gamma^0 \Gamma^\ell \right \} \Psi \\
&=& \bar{\Psi} [\Gamma^i, \Gamma^j] \Psi
-2i\epsilon_{ijk} \eta_\ell \bar{\Psi} \begin{pmatrix} 0 & [S_k, \Sigma_\ell] \\ [S_k, \Sigma_\ell] & 0 \end{pmatrix} \Psi \\
&=& \bar{\Psi} [\Gamma^i, \Gamma^j] \Psi
-2i\epsilon_{ijk} (i\epsilon_{k\ell m}) \eta_\ell \bar{\Psi} \begin{pmatrix} 0 & \Sigma_m \\ \Sigma_m & 0 \end{pmatrix} \Psi \\
&=& \bar{\Psi} [\Gamma^i, \Gamma^j] \Psi
+ (\delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell}) \eta_\ell \bar{\Psi} [\Gamma^0, \Gamma^m] \Psi \\
&=& \bar{\Psi} [\Gamma^i, \Gamma^j] \Psi
+ \eta_i \bar{\Psi} [\Gamma^0, \Gamma^j]\Psi
+ \eta_j \bar{\Psi} [\Gamma^i, \Gamma^0]\Psi \\
\eeqa
It transforms as we'd expect for a tensor.
\section*{$\Sigma$ in terms of spin}
The matrices $\Sigma_i$ act on wave functions with $p+q$ indices. If we treat the two sets of indices as two seperate spaces, with spins $\frac{p}{2}, \frac{q}{2}$ respectively, we can write it as the sum of those spaces spin operators: $\Sigma_i = 2(S^P_i - S^Q_i)$. We can then write the total spin operator as $S^I_i = S^P_i + S^Q_i$.
From these expressions, and because $[S^P_i, S^Q_j]=0$, we can obtain
\beqa
[S^I_i, \Sigma_j] = i\epsilon_{ijk}\Sigma_k \\ {}
[\Sigma_i, \Sigma_j] = 4i\epsilon_{ijk}S^I_k
\eeqa
We can show that wave functions of definite spin are also eigenfunctions of $\Sigma^2$ and $\Sigma \cdot S^I$:
\beqa
{S^P}^2 &=& \frac{p}{2} ( \frac{p}{2} + 1) \\
{S^Q}^2 &=& \frac{q}{2} ( \frac{q}{2} + 1) \\
(S^I)^2 &=& \frac{p+q}{2} ( \frac{p+q}{2} + 1 ) \\
&=& \frac{p}{2} (\frac{p}{2} + 1) + \frac{q}{2}(\frac{q}{2} + 1 ) + 2 \frac{pq}{4} \\
&=& {S^P}^2 + 2\frac{pq}{4} + {S^Q}^2 \\
{S^P} \cdot {S^Q} &=& \frac{pq}{4} \\
\Sigma ^2 &=& 4(S^P - S^Q)^2 \\
&=& 4({S^P}^2 + {S^Q}^2 - 2 S^P \cdot S^Q) \\
&=& 4\left(
\frac{p}{2} ( \frac{p}{2} + 1)
+\frac{q}{2} ( \frac{q}{2} + 1)
- \frac{pq}{2}
\right ) \\
&=& p^2 + q^2 - 2pq + 2(p + q) \\
&=& (p-q)^2 + 2(p+q) \\
\Sigma \cdot S &=& 2 (S^P - S_Q) \cdot (S^P + S_Q) \\
&=& 2 (S^P)^2 - 2 (S^Q)^2 \\
&=& \frac{1}{2} ( p^2 - q^2 + p - q ) \\
\eeqa
Expressing these in terms of $I= \frac{p+q}{2}$ and $\Delta = p-q$ we can write
\beqa
S^2 &=& I(I+1) \\
\Sigma^2 &=& 4I + \Delta \\
\Sigma \cdot S &=& \frac{\Delta}{2} ( 2I + 1) \\
\eeqa
We can guess that the matrix element of $\Sigma_i \Sigma_j$ must be expressible in terms of the spin operator's matrix element. Assuming a correspondance between the traceless tensor component of each operator
\beqa
\Sigma_i \Sigma_j + \Sigma_j \Sigma_i - \frac{2}{3} \delta_{ij} \gv{\Sigma}^2
&=& \lambda \left \{ I_i I_j + I_j I_i - \frac{2}{3} \delta_{ij} \v{I}^2 \right\} \\
\eeqa
We want to determine the constant $\lambda$. One easy way to do it is to consider the zz component of the tensor structure acting on a wave function with all spin projected in the z direction. Then $I_3 \to \frac{p+q}{2} = I$, and $\Sigma_3 \to p-q = \Delta$, giving
\beqa
2 \Delta^2 - \frac{2}{3} (4I + \Delta)
&=& \lambda \left \{ 2 I^2 -\frac{2}{3} (I^2 + I) \right \} \\
&=& \lambda \frac{2}{3}I(2I - 1 )
\eeqa
For integer spin we have $\Delta = 0$, giving
\beqa
-\frac{8}{3} I &=& \lambda_1 \frac{2}{3}I (2I -1) \\
\lambda_1 &=& -\frac{4}{2I-1} \\
\eeqa
For half spin we have $\Delta = 1$
\beqa
\frac{4}{3} (1 - 2I) &=& \lambda_{\frac{1}{2}} \frac{2}{3}I (2I -1) \\
\lambda_{\frac{1}{2}} &=&-\frac{4}{2I} \\
\eeqa
\section*{Consideration of Gordon identity for these general spinors}
For spin-$\frac{1}{2}$ particles we can derive, from the Dirac equation, the Gordon identity
\beqa
\bar{u}(p') \gamma^\mu u(p) &=& \bar{u}(p')\left ( \frac{ p^\mu + p'^\mu}{2m} + \frac{\sigma^{\mu\nu} q_\nu}{2m} \right )u(p) \\
\eeqa
We can examine whether this type of identity is consistent with the general spin formalism. Consider what the identity implies for a special case: the zero component with $\v{p'} = \v{p}$. If true, then
\beqa
\bar{u} \gamma^0 u &=& \bar{u} \frac{p_0}{m} u \\
u^\dagger u &=& \frac{p_0}{m} u^\dagger \gamma^0 u \\
\varphi^\dagger \varphi + \chi^\dagger \chi &=& \frac{p_0}{m} (\varphi^\dagger \varphi - \chi^\dagger \chi) \\
\xi_0^\dagger \left ( \cosh^2 \frac{\Sigma \cdot \phi }{2} + \sinh^2\frac{\Sigma \cdot \phi }{2} \right ) \xi_0 &=& \frac{p_0}{m} \xi_0^\dagger \left ( \cosh^2 \frac{\Sigma \cdot \phi }{2} - \sinh^2\frac{\Sigma \cdot \phi }{2} \right ) \xi_0 \\
\xi_0^\dagger \left (1 + 2\sinh^2 \frac{\Sigma \cdot \phi }{2} \right ) \xi_0
&=&
\frac{p_0}{m} \xi_0^\dagger \xi \\
2 \xi_0^\dagger \sinh^2 \frac{\Sigma \cdot \phi }{2} \xi_0
&=&
\frac{p_0-m}{m} \xi_0^\dagger \xi \\
\eeqa
We can further consider what this implies about the first order terms in the relativistic expansion. The two sides can be approximated:
\beqa
\frac{p_0-m}{m} &\approx& \frac{p^2}{2m^2} \\
2\sinh^2 \frac{\Sigma \cdot \phi }{2} &\approx& \frac{(\Sigma \cdot p)^2 }{2m^2} \\
\eeqa
This then implies
\beqa
\xi_0^\dagger \frac{(\Sigma \cdot p)^2 }{2m^2} \xi_0 &=& \xi_0^\dagger \frac{p^2}{2m^2} \xi_0 \\
\eeqa
which is true for spin-$\frac{1}{2}$, but looks unlikely to be true in general. To investigate, we can explicitly evaluate. We can evaluate the left side by first evaluating $\avg{p_i p_j} = \frac{p^2}{3} \delta_{ij}$. Then we'll use that $\Sigma^2 = 4S + \Delta$.
\beqa
\frac{p^2}{6m^2} \xi_0^\dagger \Sigma^2 \xi_0 &=& \xi_0^\dagger \frac{p^2}{2m^2} \xi_0 \\
\frac{p^2}{6m^2} (4S + \Delta) &=& \frac{p^2}{2m^2} \\
\eeqa
This implies that $4S + \Delta =3$, which again is only true for spin-$\frac{1}{2}$. ($\Delta=1$ for half-integer spin, zero otherwise.) For all other spins, it seems that the Gordon identity must prove incorrect for this particular case, and therefore is not generally true.
\end{document}