-
Notifications
You must be signed in to change notification settings - Fork 0
/
breit.tex
712 lines (593 loc) · 32.6 KB
/
breit.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
\chapter{The interaction potential and the quantum mechanical Hamiltonian}
\section{Calculation of Breit potential}
We want to calculate the interaction potential between two charged particles, at next to leading order. We derive this potential from the one-photon exchange.
%TODO discuss exact path of derivation
We already have a Lagrangian for general-spin NRQED that is accurate to the order needed. From this we can obtain the one photon vertex. Working in the Coulomb gauge, the photon propagator is such that $D_{0i}=0$. So we can think of it as splitting into two parts: represent $D_{00}$ by a dashed line, and $D_{ij}$ by a wavy one. Then terms with $A_0$ and $A_i$ represent two types of vertices.
\subsection{Feynman rules}
The Coulomb vertex comes from the terms out of the general NRQED Lagrangian involving $A_0$
\small
\beq
\mathcal{L}_{A_0} = \Psi^\dagger \Big ( -eA_0
+ c_D \frac{ e(\v{\grad} \smalldot \v{E} - \v{E} \smalldot \v{\grad} ) }{8m^2}
+ c_Q \frac{e Q_{ij} (\nabla_i E_j - E_i \nabla_j) }{8m^2}
+ c^{1}_S \frac{ ie \v{S} \smalldot ( \v{\grad} \times \v{E} - \v{E} \times \v{\grad} )}{8m^2}
\Big )\Psi.
\eeq
\normalsize
%Term by term
\mbox{
\begin{minipage}{1.2in}
\includegraphics[scale=0.7]{eps/DashVertexNRQED}
\end{minipage}
= \hspace{.5em} $V_0 $ \hspace{.5em}
= \hspace{.5em} $ i e \Big ( 1 + \frac{1}{8m^2} \big [ c_D \v{q}^2 + c_Q Q_{ij} q_i q_j - 2 i c_S \v{S} \cdot \v{p} \times \v{q} \big ]\Big)$
}
The part of the Lagrangian representing interaction with a transverse photon is
\beqa
\mathcal{L}_{\v{A}} &=& \Psi^\dagger \big ( - ie \frac{ \{\nabla_i, A_i \} }{2m}
+ c_F e \frac{\v{S} \smalldot \v{B}} {2m}
\big )\Psi.
\eeqa
So the transverse vertex is
\mbox{
\begin{minipage}{1.4in}
\includegraphics[scale=0.7]{eps/WaveVertexNRQED}
\end{minipage}
= \hspace{1em} $V_i $ \hspace{1em}
= \hspace{1em} $ i\frac{e}{2m} \Big ( \v{p} + \v{p'} + c_F i \v{S} \times \v{q} \Big)_i$.
}
\subsection{Calculation of the interaction potential}
The two particles will have Lagrangians, and thus vertices, of the same general form. However, the coefficients will differ, so denote the coefficients of the second particle by $d$ rather than $c$. Call the particles $1$ and $2$, and denote which field operators act on with these numerals. Then the interaction diagrams will be
%
%% Dashed diagram
%%%
%%%%%%%%%%%%%%%%%%%%
\hspace{-2em} \mbox{
\begin{minipage}{0.8in}
\includegraphics[scale=0.7]{eps/DashBreit}
\end{minipage}
= {\small $V^1_0 V^2_0 D_{00} $ \normalsize}
=
\begin{minipage}{4in} %Equation for dashed breit
\small
\beq
\begin{split}
\left[ -\frac{1}{\v{q}^2} \right]
ie_2\phi_2^\dagger \left\{ 1 - \frac{1}{8m_2^2}\left ( d_D \v{q}^2 + d_Q {Q_2}_{ij} q_i q_j + 2 i d_S \v{S}_2 \cdot \v{p}_2 \times \v{q} \right ) \right \}\phi_2
\\ \times \hspace{1em} ie_1\phi_1^\dagger \left\{ 1 - \frac{1}{8m_1^2}\left ( c_D \v{q}^2 + c_Q {Q_1}_{ij} q_i q_j - 2 i c_S \v{S}_1 \cdot \v{p}_1 \times \v{q} \right ) \right \}\phi_1 .
\end{split}
\eeq
\normalsize
\end{minipage}
}
The expansion to the order needed is trivial:
\beq \begin{split}
V^1_0 V^2_0 D_{00} = e_1 e_2 \frac{1}{\v{q}^2} (\phi^\dagger_1 \phi^\dagger_2 \phi_2 \phi_1) \Big [
1 - \frac{1}{8m_2^2}\left ( d_D \v{q}^2 + d_Q {Q_2}_{ij} q_i q_j + 2 i c_S \v{S}_2 \cdot \v{p}_2 \times \v{q} \right )
\\ - \frac{1}{8m_1^2}\left ( c_D \v{q}^2 + c_Q {Q_1}_{ij} q_i q_j - 2 i c_S \v{S}_1 \cdot \v{p}_1 \times \v{q} \right )
\Big ] .
\end{split}
\eeq
%%
%% Wavey diagram
%%
%%%%%%%%%%%%%%%%%%%%
The exchange of a transverse photon is given by
\hspace{-2em} \mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.7]{eps/WaveBreit}
\end{minipage}
= {\small $V^1_i V^2_j D_{ij} $ \normalsize}
=
\begin{minipage}{1.4in} %equation for Wavey breit
\small
\[
\left[ \frac{i e_1}{2m_1} \phi_1^\dagger \left\{ (2p_1 + q)^i - c_F i\epsilon_{k\ell i} q_k {S_1}_\ell \right \} \phi_1 \right ]
\left[ \frac{1}{\v{q}^2} \left(\delta_{ij} - \frac{q_i q_j}{\v{q}^2} \right ) \right ]
\]
\[
\times \left[ \frac{i e_2}{2m_2} \phi_2^\dagger \left\{ (2p_2 - q)^j + d_F i\epsilon_{m n j} q_m {S_2}_n \right \} \phi_1 \right ]
\]
\normalsize
\end{minipage}
}
This is a mess of terms that will simplify. Consider first the inner terms with just $\delta_{ij}$. Some terms drop out because $q_i q_j \epsilon_{ijk}=0$,
\beq
\delta_{ij} \left[ (2p_1 + q)^i - i c_F (\epsilon_{k\ell i} q_k {S_1}_\ell) \right ]
\left[ (2p_2 - q)^j + i d_F (\epsilon_{m n j} q_m {S_2}_n) \right ]
\eeq
\beq
\begin{split}
=& (2\v{p_1} + \v{q}) \cdot ( 2\v{p_2} - \v{q}) + 2 i d_F q_m {S_2}_n p_j \epsilon_{mnj} - 2 i c_F q_k{S_1}_\ell p_k \epsilon_{k\ell i} )
\\&+ (c_F d_F) q_k q_m {S_1}_\ell {S_2}_n (\delta_{km} \delta_{\ell n } - \delta_{kn} \delta_{\ell m} )
\\ =& (2\v{p_1} + \v{q}) \cdot ( 2\v{p_2} - \v{q}) + 2i \v{q} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )
\\& + c_F d_F \big(\v{q}^2 \v{S_1} \cdot \v{S_2} - (\v{S_1} \cdot \v{q})(\v{S_2} \cdot \v{q})\big).
\end{split}
\eeq
Now consider the contraction with $q_i q_j$. This is much simpler, as $\v{q} \times \v{q}=0$.
\[
q_i q_j \left[ (2p_1 + q)^i - i c_F \epsilon_{k\ell i} q_k {S_1}_\ell \right ]
\left[ (2p_2 - q)^j + i d_F \epsilon_{m n j} q_m {S_2}_n \right ]
\]
\[
= (2 \v{p_1} + \v{q}) \cdot \v{q} (2\v{p_2} - \v{q}) \cdot \v{q}
= 4 (\v{p_1} \cdot \v{q})( \v{p_2} \cdot \v{q}) + \v{q}^2 ( 2\v{p_2} \cdot \v{q} - 2\v{p_1} \cdot \v{q} - \v{q}^2 ).
\]
So
\hspace{-2em} \mbox{
\begin{minipage}{0.8in}
\includegraphics[scale=0.7]{eps/WaveBreit}
\end{minipage}
= \hspace{0.5em} \scriptsize{ $V^1_i V^2_j D_{ij} $}\hspace{0.5em}
=
\begin{minipage}{4in} %equation for Wavey breit
\scriptsize
\beq
\begin{split} & -\frac{ e_1 e_2 }{4 m_1 m_2} \frac{1}{\v{q}^2} (\phi^\dagger_1 \phi^\dagger_2 \phi_2 \phi_1)
\Bigg \{
4\left( \v{p_1} \cdot \v{p_2} - \frac{(\v{p_1} \cdot \v{q})( \v{p_2} \cdot \v{q})}{\v{q}^2} \right )
\\& + 2i \v{q} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )
+ c_F d_F \big(\v{q}^2 \v{S_1} \cdot \v{S_2} - (\v{S_1} \cdot \v{q})(\v{S_2} \cdot \v{q})\big)
\Bigg \} .
\end{split}
\eeq
\normalsize
\end{minipage}
}
The total interaction amplitude is then
\beqa
M &=& e_1 e_2 \frac{1}{\v{q}^2} (\phi^\dagger_1 \phi^\dagger_2 \phi_2 \phi_1) \Big\{
1 - \frac{1}{8m_2^2}\left ( d_D \v{q}^2 + d_Q {Q_2}_{ij} q_i q_j + 2 i d_S \v{S}_2 \cdot \v{p}_2 \times \v{q} \right )
\\&& - \frac{1}{8m_1^2}\left ( c_D \v{q}^2 + c_Q {Q_1}_{ij} q_i q_j - 2 i c_S \v{S}_1 \cdot \v{p}_1 \times \v{q} \right )
- \frac{1}{m_1 m_2}\left( \v{p_1} \cdot \v{p_2} - \frac{(\v{p_1} \cdot \v{q})( \v{p_2} \cdot \v{q})}{\v{q}^2} \right )
\\&& - \frac{i }{2 m_1 m_2} \v{q} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )
- \frac{c_F d_F}{4 m_1 m_2} \big(\v{q}^2 \v{S_1} \cdot \v{S_2} - (\v{S_1} \cdot \v{q})(\v{S_2} \cdot \v{q})\big)
\Big \}.
\eeqa
If we distribute the $1/\v{q}^2$ we get
\beqa
M &=& e_1 e_2 (\phi^\dagger_1 \phi^\dagger_2 \phi_2 \phi_1) \Big\{
\frac{1}{\v{q}^2} - \frac{1}{8m_2^2}\left ( d_D + d_Q {Q_2}_{ij} \frac{ q_i q_j }{\v{q}^2 } + 2 i d_S \frac{\v{q} \cdot \v{S_2} \times \v{p_2} }{\v{q}^2} \right )
\\&& - \frac{1}{8m_1^2}\left ( c_D + c_Q {Q_1}_{ij} \frac{ q_i q_j }{\v{q}^2 } - 2 i c_S \frac{\v{q} \cdot \v{S_1} \times \v{p_1} }{\v{q}^2} \right )
- \frac{1}{m_1 m_2}\left( \frac{\v{p_1} \cdot \v{p_2}}{\v{q}^2} - \frac{(\v{p_1} \cdot \v{q})( \v{p_2} \cdot \v{q})}{\v{q}^4} \right )
\\&& - \frac{i }{2 m_1 m_2} \frac{\v{q} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )}{\v{q}^2}
- \frac{c_F d_F}{4 m_1 m_2} \big( \v{S_1} \cdot \v{S_2} - \frac{(\v{S_1} \cdot \v{q})(\v{S_2} \cdot \v{q})}{\v{q}^2}\big)
\Big \}.
\eeqa
\subsection{Position space potential}
Define $U(\v{p_1}, \v{p_2}, \v{q})$ by
\[
M = (\phi^\dagger_1 \phi^\dagger_2 \phi_2 \phi_1) U(\v{p_1}, \v{p_2}, \v{q}),
\] so
\small \beq \begin{split}
U(\v{p_1}, \v{p_2}, \v{q}) =& e_1 e_2 \Big\{
\frac{1}{\v{q}^2} - \frac{1}{8m_2^2}\left ( d_D + d_Q {Q_2}_{ij} \frac{ q_i q_j }{\v{q}^2 } + 2 i d_S \frac{\v{q} \cdot \v{S_2} \times \v{p_2} }{\v{q}^2} \right )
\\& - \frac{1}{8m_1^2}\left ( c_D + c_Q {Q_1}_{ij} \frac{ q_i q_j }{\v{q}^2 } - 2 i c_S \frac{\v{q} \cdot \v{S_1} \times \v{p_1} }{\v{q}^2} \right )
- \frac{1}{m_1 m_2}\left( \frac{\v{p_1} \cdot \v{p_2}}{\v{q}^2} - \frac{(\v{p_1} \cdot \v{q})( \v{p_2} \cdot \v{q})}{\v{q}^4} \right )
\\& - \frac{i }{2 m_1 m_2} \frac{\v{q} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )}{\v{q}^2}
- \frac{c_F d_F}{4 m_1 m_2} \big( \v{S_1} \cdot \v{S_2} - \frac{(\v{S_1} \cdot \v{q})(\v{S_2} \cdot \v{q})}{\v{q}^2}\big)
\Big \}.
\end{split}\eeq \normalsize
We want to transform this expression into position space. These transformations are derived in Berestetskii, Lifshitz and Pitaevskii \cite{book:BLP1971}.
\beqa
\int e^{i \v{q} \cdot \v{r} } \frac{d^3q}{(2\pi)^3}
&=& \delta^{(3)}(\v{r}) \\
\int e^{i \v{q} \cdot \v{r} } \frac{d^3q}{(2\pi)^3} \frac{1}{\v{q}^2}
&=& \frac{1}{4\pi r} \\
\int e^{i \v{q} \cdot \v{r} } \frac{d^3q}{(2\pi)^3} \frac{q_i}{\v{q}^2}
&=& \frac{i r_i}{4\pi r^3} \\
\int e^{i \v{q} \cdot \v{r} } \frac{d^3q}{(2\pi)^3} \frac{q_i q_j}{\v{q}^4}
&=& \frac{1}{8\pi r} \left( \delta_{ij} - \frac{r_i r_j}{r^2} \right ) \\
\int e^{i \v{q} \cdot \v{r} } \frac{d^3q}{(2\pi)^3} \frac{q_i q_j}{\v{q}^2}
&=& \frac{1}{4\pi r^3} \left( \delta_{ij} - 3\frac{r_i r_j}{r^2} \right ) + \frac{1}{3} \delta_{ij} \delta^{(3)}(\v{r}) \\
\eeqa
The quadrupole moment $Q_{ij}$ is symmetric and traceless. This means
\[
Q_{ij} (\delta_{ij} - 3\frac{r_i r_j}{r^2}) = - 3 \frac{Q_{ij} r_i r_j}{r^2}.
\]
Now applying the identities above, we find the Fourier transform of $U$ is
\small
\beq
\begin{split}
\overline{U}(\v{p_1}, \v{p_2}, \v{r}) =&
e_1 e_2 \Bigg[
\frac{1}{4\pi r}
- \frac{1}{8m_2^2}\left ( d_D \delta(\v{r}) - 3 d_Q \frac{{Q_2}_{ij} r_i r_j}{4 \pi r^5} - d_S \frac{\v{r} \cdot \v{S_2} \times \v{p_2} }{2\pi r^3} \right )
\\& - \frac{1}{8m_1^2}\left ( \delta(\v{r}) - 3 c_Q \frac{{Q_1}_{ij} r_i r_j}{4 \pi r^5} + c_S \frac{\v{r} \cdot \v{S_1} \times \v{p_1} }{2\pi r^3} \right )
\\& - \frac{1}{m_1 m_2}\left( \frac{\v{p_1} \cdot \v{p_2}}{4\pi r} - \frac{1}{8 \pi r}\left\{ \v{p_1} \cdot \v{p_2} - \frac{(\v{p_1} \cdot \v{r}) (\v{p_2} \cdot \v{r}) }{r^2} \right\} \right )
\\& + \frac{1}{2 m_1 m_2} \frac{ \v{r} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )}{4\pi r^3}
\\& - \frac{c_F d_F }{4 m_1 m_2}\bigg( \v{S_1} \cdot \v{S_2} \delta(\v{r})
- \frac{1}{4\pi r^3} \left\{ \v{S_1} \cdot \v{S_2} - 3 \frac{(\v{S_1} \cdot \v{r}) (\v{S_2} \cdot \v{r}) }{r^2}\right \}
- \v{S_1} \cdot \v{S_2} \frac{1}{3} \delta(\v{r}) \bigg)
\Bigg].
\end{split}
\eeq
\normalsize
Or, combining the few like terms,
\small
\beqa
\overline{U}(\v{p_1}, \v{p_2}, \v{r}) &=&
e_1 e_2 \Bigg[
\frac{1}{4\pi r}
- \frac{1}{8m_2^2}\left ( d_D \delta(\v{r}) - 3 d_Q \frac{{Q_2}_{ij} r_i r_j}{4 \pi r^5} - d_S \frac{\v{r} \cdot \v{S_2} \times \v{p_2} }{2\pi r^3} \right )
\\&& - \frac{1}{8m_1^2}\left ( c_D \delta(\v{r}) - 3 c_Q \frac{{Q_1}_{ij} r_i r_j}{4 \pi r^5} + c_S \frac{\v{r} \cdot \v{S_1} \times \v{p_1} }{2\pi r^3} \right )
\\&& - \frac{1}{m_1 m_2}\left( \frac{\v{p_1} \cdot \v{p_2}}{8\pi r} + \frac{(\v{p_1} \cdot \v{r}) (\v{p_2} \cdot \v{r}) }{8 \pi r^3} \right )
\\&& + \frac{1}{2 m_1 m_2} \frac{ \v{r} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )}{4\pi r^3}
\\&& - \frac{c_F d_F }{4 m_1 m_2}\bigg( \frac{2}{3} \v{S_1} \cdot \v{S_2} \delta(\v{r})
- \frac{1}{4\pi r^3} \left\{ \v{S_1} \cdot \v{S_2} - 3 \frac{(\v{S_1} \cdot \v{r}) (\v{S_2} \cdot \v{r}) }{r^2} \right \} \bigg)
\Bigg].
\eeqa
\normalsize
This represents the interaction in the absence of any external magnetic field. However, to derive the $g$-factor that is exactly the needed interaction. These additional terms will come from diagrams which involve both the exchange of a photon and interaction with the potential $\v{A}$.
\section{Photon exchange in an external field}
\subsection{Feynman rules}
Now we want to derive the interaction potential when there is an external magnetic field present. Additional diagrams are needed, which involve not just the exchange of one photon, but also an additional interaction with the external field.
Because we consider the point-like interaction we don't need to consider diagrams which contain either charged particle's propagator. So the interaction we're interested in will necessarily involve two-photon vertices. The part of the NRQED Lagrangian with such terms is
\scriptsize
\beqa
\mathcal{L}_{A^2} &=& \Psi^\dagger ( - \frac{e^2 \v{A}^2}{2m} - e^2 \frac{ \{ \grad^2, \v{A}^2 \}
}{8m^3} - e^2\frac{ \{\nabla_i, A_i \} \{\nabla_j, A_j\} }{8m^3}
+ c_S \frac{ e^2 \v{S} \smalldot ( \v{A} \times \v{E} - \v{E} \times \v{A} )}{8m^2} ) \Psi.
\eeqa
\normalsize
Organise the terms in the two-photon Lagrangian so that they look like
\[
\mathcal{L}_{A^2} = A_0 A_i \Psi^\dagger \Psi W_{i}(\v{p}, q) + A_i A_j \Psi^\dagger \Psi W_{ij}(\v{p}, q) + A_0 A_0 \Psi^\dagger \Psi W_0 .
\]
It'll turn out we want only the very first leading order terms of $W_i$ and $W_{ij}$. (These $W$ shouldn't be confused with the fields in the spin-one calculation.) The leading order term in $W_{ij}$ is
\[
W_{ij} = - \frac{e^2 \delta_{ij}}{2m}.
\]
The leading order term in $W_i$ comes from the $\v{A} \times \v{E}$ term. $\v{E} = -\partial_0 \v{A} - \grad A_0$. So
\[
W_i = - i c_S \frac{e^2}{4m^2} \epsilon_{ijk} {q_j S_k} .
\]
From these we can write down the diagrams. The vertex with two transverse photons carrying indices $i$ and $j$ is associated with a symmetry factor of $1/2$, so
\begin{center}
\mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.5]{eps/WaveWaveVertex}
\end{minipage}
$ = 2 W_{ij} = -i\frac{e^2 \delta_{ij}}{m} $.
}
\end{center}
The vertex with one transverse line (index $i$ and momentum $k$) and one Coulomb photon (incoming momentum $q$) is
\begin{center}
\mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.5]{eps/DashWaveVertex}
\end{minipage}
$ = W_i = c_S \frac{e^2}{4m^2} \epsilon_{ijk} {q_j S_k} $.
}
\end{center}
The external field $\v{A}$ will be contracted with such vertices; it will be necessary to label the external field just as it was necessary to label the particles. The convention is that in position space $\v{A}_1 = \v{A}(\v{r}_1)$ and $\v{A}_2 = \v{A}(\v{r}_2)$.
We also need the one-photon vertices which were derived in the previous section, but only to leading order. These are, dropping those higher order terms,
\mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.5]{eps/DashVertexNRQED}
\end{minipage}
= \hspace{1em} $ i e $,
}
\hspace{5em}
\mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.5]{eps/WaveVertexNRQED}
\end{minipage}
= \hspace{1em} $ i\frac{e}{2m} \Big ( \v{p} + \v{p'} + c_F i \v{S} \times \v{q} \Big)_i$.
}
The Coulomb propagator is just as it was before.
\subsection{Interaction diagrams}
There are four diagrams that capture the type of interaction we're looking for. The particles can exchange either a transverse or Coulomb photon, and either particle can interact with the external magnetic field. In each of the diagrams, let $q$ be the momentum of the exchanged photon, directed towards the vertex of particle one. Let $k$ be the momenta of the photon interacting with the external field.
First, the two diagrams with Coulomb exchange are
\mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.7]{eps/DashBreitA1}
\end{minipage}
= \hspace{1em}
$
\phi^\dagger_2\Big( ie_2 \Big )\phi_2
\Big( - \frac{1}{\v{q}^2} \Big )
\phi^\dagger_1\Big( c_S \frac{e_1^2}{4m_1^2} \v{S_1} \cdot \v{A}_1 \times \v{q} \Big )\phi_1
$
}
\[
= - i e_1 e_2 (\phi^\dagger_2 \phi^\dagger_1 \phi_1 \phi_2) c_s \frac{e_1}{4m_1^2} \frac{\v{S_1} \cdot \v{A}_1 \times \v{q} }{\v{q}^2},
\]
and
\mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.7]{eps/DashBreitA2}
\end{minipage}
= \hspace{1em}
\begin{minipage}{1in}
\[
-\phi^\dagger_2\Big( d_S \frac{e_2^2}{4m_2^2} \v{S_2} \cdot \v{A}_2 \times \v{q} \Big )\phi_2
\Big( - \frac{1}{\v{q}^2} \Big )
\phi^\dagger_1\Big( ie_1 \Big )\phi_1
\]
\end{minipage}
}
\[
= + i e_1 e_2 (\phi^\dagger_2 \phi^\dagger_1 \phi_1 \phi_2) d_S \frac{e_2}{4m_2^2} \frac{\v{S_2} \cdot \v{A}_2 \times \v{q} }{\v{q}^2}.
\]
Then, diagrams with transverse exchange:
\mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.7]{eps/WaveBreitA1}
\end{minipage}
= \hspace{1em}
\begin{minipage}{1in}
\[
\phi_2^\dagger\Big( i\frac{e_2}{2m_2} [2 p_2 - q - d_F i \v{S_2} \times \v{q}]_i \Big )\phi_2
\Big( \frac{\delta_{ij}}{\v{q}^2} - \frac{ q_i q_j}{\v{q}^4} \Big )
\phi_1^\dagger\Big ( \frac{-i e_1^2 A_j }{m_1}\Big ) \phi_1
\]
\end{minipage}
}
\beq
= e_1 e_2 (\phi^\dagger_2 \phi^\dagger_1 \phi_1 \phi_2) \frac{e_1}{2 m_1 m_2} \Big (
\frac{ (2\v{p}_2 - \v{q}) \cdot \v{A}_1 }{\v{q}^2}
- i d_F \frac{ \v{S}_2 \cdot \v{q} \times \v{A}_1 }{\v{q}^2}
- \frac{ (2\v{p}_2 - \v{q}) \cdot \v{q} \v{A}_1 \cdot \v{q} }{\v{q}^4}
\Big)
\eeq
\beq
= e_1 e_2 (\phi^\dagger_2 \phi^\dagger_1 \phi_1 \phi_2) \frac{e_1}{2 m_1 m_2} \Big (
\frac{ 2\v{p}_2 \cdot \v{A}_1 }{\v{q}^2}
- i d_F \frac{ \v{S}_2 \cdot \v{q} \times \v{A}_1 }{\v{q}^2}
- \frac{ (2\v{p}_2 \cdot \v{q}) (\v{A}_1 \cdot \v{q}) }{\v{q}^4 }
\Big),
\eeq
and
\mbox{
\begin{minipage}{1in}
\includegraphics[scale=0.7]{eps/WaveBreitA2}
\end{minipage}
= \hspace{1em}
\begin{minipage}{1in}
\[
\phi_2^\dagger \Big ( \frac{-i e_2^2 A_j }{m_2} \Big )\phi_2
\Big( \frac{\delta_{ij}}{\v{q}^2} - \frac{ q_i q_j}{\v{q}^4} \Big )
\phi_1^\dagger\Big( i\frac{e_1}{2m_1} [2 p_1 + q + c_F i \v{S_1} \times \v{q}]_i \Big )\phi_1
\]
\end{minipage}
}
\beq
= e_1 e_2 (\phi^\dagger_2 \phi^\dagger_1 \phi_1 \phi_2) \frac{e_2}{2 m_1 m_2} \Big (
\frac{ (2\v{p}_1 + \v{q}) \cdot \v{A}_2 }{\v{q}^2}
+ i c_F \frac{ \v{S}_1 \cdot \v{q} \times \v{A}_2 }{\v{q}^2}
- \frac{ (2\v{p}_1 + \v{q}) \cdot \v{q} \v{A}_2 \cdot \v{q} }{\v{q}^4}
\Big)
\eeq
\beq
= e_1 e_2 (\phi^\dagger_2 \phi^\dagger_1 \phi_1 \phi_2) \frac{e_2}{2 m_1 m_2} \Big (
\frac{ 2\v{p}_1 \cdot \v{A}_2 }{\v{q}^2}
+ i c_F \frac{ \v{S}_1 \cdot \v{q} \times \v{A}_2 }{\v{q}^2}
- \frac{ (2\v{p}_1 \cdot \v{q}) (\v{A}_2 \cdot \v{q}) }{\v{q}^4 }
\Big).
\eeq
The total contribution to the interaction potential from these diagrams would then be
\beqa
U_2(\v{p_1}, \v{p_2}, \v{q}) &=& e_1 e_2 \Big\{
- i c_s \frac{e_1}{4m_1^2} \frac{\v{S_1} \cdot \v{A}_1 \times \v{q} }{\v{q}^2}
+ i d_S \frac{e_2}{4m_2^2} \frac{\v{S_2} \cdot \v{A}_2 \times \v{q} }{\v{q}^2}
\\&& +\frac{e_1}{ m_1 m_2} \Big (
\frac{ \v{p}_2 \cdot \v{A}_1 }{\v{q}^2}
- i d_F \frac{ \v{S}_2 \cdot \v{q} \times \v{A}_1 }{2\v{q}^2}
- \frac{ (\v{p}_2 \cdot \v{q}) (\v{A}_1 \cdot \v{q}) }{\v{q}^4 }
\Big )
\\&& +\frac{e_2}{ m_1 m_2} \Big (
\frac{ \v{p}_1 \cdot \v{A}_2 }{\v{q}^2}
+ i c_F \frac{ \v{S}_1 \cdot \v{q} \times \v{A}_2 }{2\v{q}^2}
- \frac{ (\v{p}_1 \cdot \v{q}) (\v{A}_2 \cdot \v{q}) }{\v{q}^4 }
\Big)
\Big\}.
\eeqa
None of these terms are gauge-invariant by themselves. So we'd expect the above to agree with what we'd get if we took the terms in the potential without $\v{A}$ and restored gauge invariance. That potential was
\footnotesize
\beqa
U_1(\v{p_1}, \v{p_2}, \v{q}) &=& e_1 e_2 \Big\{
\frac{1}{\v{q}^2} - \frac{1}{8m_2^2}\left ( d_D + d_Q {Q_2}_{ij} \frac{ q_i q_j }{\v{q}^2 } + 2 i d_S \frac{\v{q} \cdot \v{S_2} \times \v{p_2} }{\v{q}^2} \right )
\\&& - \frac{1}{8m_1^2}\left ( c_D + c_Q {Q_1}_{ij} \frac{ q_i q_j }{\v{q}^2 } - 2 i c_S \frac{\v{q} \cdot \v{S_1} \times \v{p_1} }{\v{q}^2} \right )
- \frac{1}{m_1 m_2}\left( \frac{\v{p_1} \cdot \v{p_2}}{\v{q}^2} - \frac{(\v{p_1} \cdot \v{q})( \v{p_2} \cdot \v{q})}{\v{q}^4} \right )
\\&& - \frac{i }{2 m_1 m_2} \frac{\v{q} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )}{\v{q}^2}
- \frac{c_F d_F}{4 m_1 m_2} \big( \v{S_1} \cdot \v{S_2} - \frac{(\v{S_1} \cdot \v{q})(\v{S_2} \cdot \v{q})}{\v{q}^2}\big)
\Big \}.
\eeqa
\normalsize
Picking out only terms with the momentum operators $\v{p}_1$, $\v{p}_2$, which we'll call $U_p$, we find:
\small \beqa
U_p(\v{p_1}, \v{p_2}, \v{q}) &=& e_1 e_2 \Big\{
\frac{1}{4m_1^2}\left ( i c_S \frac{\v{q} \cdot \v{S_1} \times \v{p_1} }{\v{q}^2} \right )
- \frac{1}{4m_2^2}\left ( i d_S \frac{\v{q} \cdot \v{S_2} \times \v{p_2} }{\v{q}^2} \right )
\\&& - \frac{1}{m_1 m_2}\left( \frac{\v{p_1} \cdot \v{p_2}}{\v{q}^2} - \frac{(\v{p_1} \cdot \v{q})( \v{p_2} \cdot \v{q})}{\v{q}^4} \right )
- \frac{i }{2 m_1 m_2} \frac{\v{q} \cdot ( d_F \v{S_2} \times \v{p_1} - c_F \v{S_1} \times \v{p_2} )}{\v{q}^2}
\Big \}.
\eeqa \normalsize
If we substitute $\v{p} \to \v{p} - e\v{A}$ we restore exactly (ignoring $A^2$ terms) the terms in $U_2$. So the position space potential in the presence of this external field may also be obtained by just the procedure of minimal substitution.
%%%%%%%%%%%%%%% OUTLINE OF REMNANT
\section{Full Hamiltonian}
The full Hamiltonian for the system will be the sum of the above Breit potential $U_\text{Br}$ and the Hamiltonians corresponding to each particle's free interaction with the external field.
\beq
H = H_1 + H_2 + U_\text{Br}
\eeq
$H_1$ and $H_2$ have exactly the same form, which may just be read off the Lagrangian of general spin in the absence of an electric field.
%TODO check \nabla E terms, for explicit spin dependence, instead of as \sigma operators in Eides text
\beq
\begin{split}
H_i =&
\frac{ (\v{p}-e_i \v{A}_i)^2 }{2m_i}
- g_i \frac{e_i}{2m_i} \v{S}_i \cdot \v{B} \left( 1 - \frac{\v{p}_i^2}{2m_i^2} \right )
\\&- (g_i - 2) \frac{e_i}{2m_i} \v{S}_i \cdot \v{B} \frac{\v{p}_i^2}{2m_i^2}
+ (g_i - 2)\frac{e_i}{2m_i} \frac{ (\v{p}_i \cdot \v{B} ) (\v{S}_i \cdot \v{p}_i) }{2m_i^2}.
\end{split}
\eeq
From above, the full interaction potential, in terms of $\v{r}=\v{r_1} - \v{r_2}$, is
\small
\beqa
U_\text{Br} &=&
e_1 e_2 \Bigg \{
\frac{1}{4\pi r}
- \frac{1}{8m_2^2}\left ( d_D \delta(\v{r}) - 3 d_Q \frac{{Q_2}_{ij} r_i r_j}{4 \pi r^5} - d_S \frac{\v{r} \cdot \v{S_2} \times [\v{p_2} - e\v{A_2}] }{2\pi r^3} \right )
\\&& - \frac{1}{8m_1^2}\left ( c_D \delta(\v{r}) - 3 c_Q \frac{{Q_1}_{ij} r_i r_j}{4 \pi r^5} + c_S \frac{\v{r} \cdot \v{S_1} \times [\v{p_1} - e \v{A_1}] }{2\pi r^3} \right )
\\&& - \frac{1}{m_1 m_2}\left( \frac{ [\v{p_1} - e\v{A_1}] \cdot [\v{p_2}- e\v{A_2} ] }{8\pi r} + \frac{([\v{p_1}- e\v{A_1}] \cdot \v{r}) ([\v{p_2} - e\v{A_2}]\cdot \v{r}) }{8 \pi r^3} \right )
\\&& + \frac{1}{2 m_1 m_2} \frac{ \v{r} \cdot ( d_F \v{S_2} \times [\v{p_1}- e\v{A_1}] - c_F \v{S_1} \times [\v{p_2}- e\v{A_2}] )}{4\pi r^3}
\\&& - \frac{c_F d_F }{4 m_1 m_2}\bigg( \frac{2}{3} \v{S_1} \cdot \v{S_2} \delta(\v{r})
- \frac{1}{4\pi r^3} \left\{ \v{S_1} \cdot \v{S_2} - 3 \frac{(\v{S_1} \cdot \v{r}) (\v{S_2} \cdot \v{r}) }{r^2} \right \} \bigg)
\Bigg \}.
\eeqa
\normalsize
To calculate the bound magnetic moment of the system, the internal degrees of freedom must be separated from the motion of the center of mass.
\section{Separation of the center of mass motion}
In the interaction above, the potential depends upon the relative displacement $\v{r}$ between the two particles, not upon the absolute positions. The free Hamiltonians $H_1$ and $H_2$ depend upon the particular position and momentum of the two. A transformation is needed which splits the Hamiltonian into two parts -- one which corresponding to the motion of a single composite particle, the other corresponding to the internal degrees of freedom of the system.
This transformation can be worked out for the leading order part of the Hamiltonian or Lagrangian, ignoring all the second order terms -- there might be additional corrections that enter from considering such, but they will enter at a higher order than needed here.
The initial free Lagrangian (in the absence of some external field) is of the form
\beq
L = \frac{1}{2} m_1 \dot{r}_1^2 + \frac{1}{2} m_1 \dot{r}_2^2 - V(\v{r_1}- \v{r_2} ) .
\eeq
The appropriate transformation is obtained by defining
\beq
\v{r} = \v{r}_1 - \v{r}_2 , \hspace{4em} \v{R} = \mu_1 \v{r}_1 + \mu_2 \v{r}_2,
\eeq
where $\mu_i = m_i / M_\text{total}$.
To work backwards from $r$ and $R$
\beq
\v{r}_1 = \v{R} + \mu_2 \v{r}, \hspace{4em} \v{r}_2 = \v{R} - \mu_1 \v{r} .
\eeq
Under transformation to such coordinates, $L$ becomes
\beq
L = \frac{1}{2} (m_1 + m_2) \dot{R}^2 + \frac{1}{2} m_\text{red} \dot{r}^2 - V(\v{r} ) .
\eeq
Since the potential $V$ depends only upon $\v{r}$, this produces two fully separate sets of terms -- one depending on $\v{R}$, the other on $\v{r}$.
Such separation is spoiled when an external field is present. Then the initial Lagrangian has the form
\beq
L = \frac{1}{2} m_1 \dot{r}_1^2 + e_1 \v{A}(\v{r}_1) \cdot \v{\dot{r}}_1+ \frac{1}{2} m_1 \dot{r}_2^2 + e_1 \v{A}(\v{r}_2) \cdot \v{\dot{r}}_2 - V(\v{r_1}- \v{r_2} )
\eeq
The same transformation as before can be applied. Using the linearity of $\v{A}$,
\beqa
\v{A}_r = \v{A}_1 + \v{A}_2, & \hspace{4em}& \v{A}_R = \mu_1 \v{A}_1 + \mu_2 \v{A}_2, \\
\v{A}_1 = \v{A}_R + \mu_2 \v{A}_r, &\hspace{4em}& \v{A}_2 = \v{A}_R - \mu_1 \v{A}_r.
\eeqa
This results in:
\beq
\begin{split} \label{eq:Sg:LrR}
L =& \, \frac{1}{2} (m_1 + m_2) \dot{R}^2 + \frac{1}{2} m_\text{red} \dot{r}^2
+ (e_1 + e_2) \v{A}(\v{R}) \cdot \dot{\v{R}}
\\& + (e_1 \mu_1 - e_2 \mu_2) (\v{A}(\v{r}) \cdot \dot{\v{R}} + \v{A}(\v{R}) \cdot \dot{\v{r}} )
+ (e_1 \mu_2^2 + e_2 \mu_1^2) \v{A}(\v{r}) \cdot{\v{r}}
- V(\v{r} ) .
\end{split}
\eeq
Even after the transformation, this still includes terms which mix $\v{r}$ and $\v{R}$. The solution, as suggested in \cite{Eides:1997sq,PhysRevA.4.59}, is to perform an additional transformation.
It can be seen that the coordinate $\v{R}$ does not describe the motion of a particle by considering the pseudomomentum in the Hamiltonian picture. The Hamiltonian corresponding to \eqref{eq:Sg:LrR} is
\beq \label{eq:Sg:HrR}
\begin{split}
H =&
\frac{ ( \v{P} - (e_1 + e_2) \v{A}(\v{R}) )^2 }{2 (m_1 + m_2) }
+ \frac{ ( \v{p} - (e_1 \mu_2^2 + e_2 \mu_1^2) \v{A}(\v{r}))^2}{2m_\text{red}}
\\&+ (e_1 \mu_2 - e_2 \mu_1)^2 \frac{ \v{A}^2(\v{R}) }{2m_\text{red}}
+ (e_1 \mu_2 - e_2 \mu_1)^2 \frac{\v{A}^2(\v{r}) }{2(m_1 + m_2)}
\\& + (e_1 \mu_2 - e_2 \mu_1) \Big \{
(e_1 \mu_2 + e_2 \mu_1) \frac{ \v{A}(\v{r}) \cdot \v{A}(\v{R}) }{m_\text{red}}
- \frac{\v{A}(\v{R}) \cdot \v{p} }{m_\text{red}}
- \frac{ \v{A}(\v{r}) \cdot \v{P} }{m_1 + m_2}
\Big \}
+ U(\v{r}).
\end{split}
\eeq
Moving in an external field, the momentum of a single charged particle is no longer conserved. However, there is a new conserved quantity: the pseudo-momentum $\v{K} = \v{P} + e\v{A}(\v{R})$. With coordinates that truly separate the internal and external degrees of freedom, the pseudo-momentum should be conserved and thus commute with the Hamiltonian.
To discuss conserved quantities, the properties of the free Hamiltonians and their canonical momenta are useful. For each $H_i$, pseudo-momentum is conserved,
\beq
[ \v{p} + e \v{A}, (\v{p}-e\v{A})^2 ] =0,
\eeq
and so $[\v{p}_1 + e_1 \v{A}_1, H_1]=0$ and $[\v{p}_2 + e_2 \v{A}_2, H_2]=0$.
By adding these quantities together, a quantity that is conserved by $H$ may be found.
\beq
\v{p}_1 + e_1 \v{A}_1 + \v{p}_2 + e_2 \v{A}_2 =
\v{P} + (e_1 + e_2) \v{A}_R + (e_1 \mu_2 - e_2 \mu_1) \v{A}_r.
\eeq
By construction this must commute with $H_1 + H_2$. So what is desired is a transformation which will take $\v{P} \to U^{-1} \v{P} U = \v{P} - (e_1 \mu_2 - e_2 \mu_1)\v{A}_r$. (A quick note about symmetry under exchange of numerical indices $1$ and $2$---both $A_r$ and the multiplicative factor before it are odd under such an operation, so the whole thing is unchanged.) After this transformation, $\v{P} + (e_1 +e_2)\v{A}_R$ will properly commute with the Hamiltonian. The specific unitary transformation will be
\beq
U = e^{-i(e_1\mu_2 - e_2 \mu_1) \v{A}_R \cdot \v{r}}.
\eeq
This will also transform the other momentum operators. While these transformations can be worked out explicitly, they can also be deduced by demanding that, like the initial Hamiltonian, the transformation of $\v{p}_1$ and $\v{p}_2$ is symmetric under exchange of numerical indices. Then, it follows from the transformation of $\v{P}= \v{p}_1 + \v{p}_2$ that
\beqa
\v{p}_1 &\to& \v{p}_1 + (e_1 \mu_2 - e_2 \mu_1) \v{A}_1 , \\
\v{p}_2 &\to& \v{p}_2 - (e_1 \mu_2 - e_2 \mu_1) \v{A}_2. \\
\eeqa
And from $\v{p} = \mu_2 \v{p}_1 - \mu_1 \v{p}_2$,
\beq
\v{p} \to \v{p} + (e_1 \mu_2 - e_2 \mu_1) \v{A}(\v{R}).
\eeq
The effects of the unitary transformation on the Hamiltonian reduce to applying these replacements. To express the potential in the new coordinates, it will help to use
\beqa
\v{p}_1 - e_1 \v{A}(\v{r}_1) &\to& \mu_1 [ \v{P} - (e_1 + e_2)\v{A}(\v{R}) ] + \left[\v{p} - [e_1 -(e_1+e_2)\mu_1^2 ] \v{A}(\v{r}) \right ], \\
\v{p}_2 -e_2 \v{A}(\v{r}_1) &\to& \mu_2 [ \v{P} - (e_1 + e_2)\v{A}(\v{R}) ] + \left[\v{p} - [e_2 -(e_1+e_2)\mu_2^2 ] \v{A}(\v{r}) \right ].
\eeqa
For one particle, that part of the full Hamiltonian which can contribute directly to the gyromagnetic moment is
\small
\beq
\begin{split}
H^{(1)}_\text{spin} =&
-g_1 \frac{e_1}{2m_1} \v{S}_1 \cdot \v{B} \left( 1 - \frac{ \v{p}_1^2 }{2m_1^2} \right )
-(g_1-2) \frac{e_1}{2m^2_1} \v{S}_1 \cdot \v{B} \frac{\v{p}_1^2 }{2m_1^2}
+ (g_1-2) \frac{e_1}{2m^2_1} \frac{( \v{p}_1 \cdot \v{B})(\v{S}_1 \cdot \v{p}_1 )}{2m_1^2}
\\& -e_1 e_2 (g_1 -1) \frac{ 2 \v{S}_1 \cdot \v{r} \times [\v{p}_1 -e_1\v{A}_1 ] }{16 \pi m_1^2 r^3}
-e_1 e_2 g_1 \frac{ 2 \v{S}_1 \cdot \v{r} \times [\v{p}_2 -e_2\v{A}_2 ] }{16 \pi m_1 m_2 r^3}.
\end{split}
\eeq
\normalsize
After transformation, this is
\footnotesize
\beq \label{eq:Br:H}
\begin{split}
H'^{(1)}_\text{spin} =&
-g_1 \frac{e_1}{2m_1} \v{S}_1 \cdot \v{B} \left( 1 - \frac{ \v{p}^2 }{2m_1^2} \right )
-(g_1-2) \frac{e_1}{2m^2_1} \v{S}_1 \cdot \v{B} \frac{\v{p}^2 }{2m_1^2}
+ (g_1-2) \frac{e_1}{2m^2_1} \frac{( \v{p} \cdot \v{B})(\v{S}_1 \cdot \v{p} )}{2m_1^2}
\\& -e_1 e_2 (g_1 -1) \frac{ 2 \v{S}_1 \cdot \v{r} \times [\v{p} - (e_1-[e_1 + e_2]\mu_1^2 )\v{A}_r ] }{16 \pi m_1^2 r^3}
-e_1 e_2 g_1 \frac{ 2 \v{S}_1 \cdot \v{r} \times [\v{p} -(e_2-[e_1 + e_2]\mu_2^2 ) \v{A}_r ] }{16 \pi m_1 m_2 r^3}.
\end{split}
\eeq
\normalsize
\section{Calculation of $g_b$}
The Hamiltonian \eqref{eq:Br:H} is finally suitable for calculating the bound $g$-factor of the particle. Taking the matrix element of these terms between $S$ states, $\matrixel{n}{H'}{n}$, the leading recoil and binding corrections to the free $g$-factor will be found. First, those terms involving $\v{r} \times \v{A}$ should be rewritten in terms of $\v{B}$:
\beq
\v{S} \cdot \v{r} \times \v{A} = \frac{1}{2} \left[ (\v{S} \cdot \v{B}) r^2 - (\v{S} \cdot \v{r}) ( \v{B} \cdot \v{r}) \right ]
\eeq
Because the matrix element is taken between spherical states, $r_i r_j$ can be replaced with $r^2/3$. After this substitution,
\beq
\v{S} \cdot \v{r} \times \v{A} \to \frac{1}{3} \v{S} \cdot \v{B} r^2
\eeq
With that replacement, there are only two types of terms left in the Hamiltonian: $\v{p}^2$ terms and $1/r$ terms. Their respective matrix elements are:
\beq
\matrixel{n}{\frac{1}{r}}{n} = - \frac{m_r e_1 e_2 }{4\pi n^2} = \frac{m_r Z\alpha}{n^2},
\eeq
\beq
\matrixel{n}{\v{p}^2}{n} = \frac{ m_r^2 e_1^2 e_2^2}{16 \pi^2 n^2} = \frac{m_r^2 (Z\alpha)^2}{n^2}.
\eeq
So finally, applying this to the whole Hamiltonian, the bound $g$ factor for the first particle is:
\beq \label{eq:Br:gbound}
\begin{split}
g_1^\text{bound} =& g_1 \Bigg [ \left( 1 - \frac{ \mu_2^2 e_1^2 e_2^2 }{32 \pi^2 n^2} \right )
\frac{ \mu_2 e_1 e_2^2 [ e_1 - (e_1 + e_2) \mu_1^2 ] }{96\pi n^2}
+ \frac{ \mu_2 e_1 e_2^2 [ e_1 - (e_1 + e_2) \mu_2^2 ] }{48\pi n^2} \Bigg]
\\& + (g_1 - 2) \Bigg [
\frac{\mu_2^2 e_1^2 e_2^2 }{48\pi^2 n^2}
+ \frac{ \mu_2 e_1 e_2^2 [ e_1 - (e_1 + e_2) \mu_1^2 ] }{96\pi n^2}
\Bigg ].
\end{split}
\eeq
Because both the original Hamiltonian and the unitary transformation were symmetric under exchange of labels, it is necessarily the case that the expression for $g_2$ can be found by just switching $1$ and $2$ everywhere above.
When applied to a hydrogen like atom, with one particle the electron and the other a nucleus with charge $Z$, the above can be simplified somewhat. In this case, $e_1 = -e$ and $ e_2 = Ze$. Then,
\beq \label{eq:Br:gbound-atom}
\begin{split}
g_1^\text{bound} =& g_1 \Bigg \{
\left( 1 - \frac{ \mu_2^2 (Z\alpha)^2}{2n^2} \right )
+ \frac{ \mu_2^2 Z^2 \alpha [ \alpha + (Z\alpha - \alpha)\mu_1^2 ] }{6n^2}
- \frac{ \mu_1^2 Z^2 \alpha [Z\alpha + (Z\alpha - \alpha)\mu_2^2 ]}{3n^2} \Bigg \}
\\& + (g_1 - 2) \Bigg \{
\frac{ \mu_2^2 (Z\alpha)^2 }{3n^2}
+ \frac{ \mu_2^2 Z^2 \alpha[ \alpha + ( Z\alpha - \alpha) \mu_1^2)\mu_1^2 ] }{6n^2} \Bigg \}.
\end{split}
\eeq