-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
35 lines (31 loc) · 986 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
import gym
import os
from common.arguments import get_args
import random
import torch
from common.utils import get_env_params
from runner import Runner
if __name__ == '__main__':
# take the configuration for the HER
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['IN_MPI'] = '1'
args = get_args()
env = gym.make(args.env_name)
# set random seeds for reproduce
env.seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# get the environment parameters
env_params = get_env_params(env)
args.obs_shape = env_params['obs_shape']
args.goal_shape = env_params['goal_shape']
args.action_shape = env_params['action_shape']
args.action_max = env_params['action_max']
args.episode_limit = env_params['episode_limit']
runner = Runner(args, env)
runner.run()