@@ -2056,6 +2056,37 @@ def drop(self, labels, axis=0, level=None, inplace=False, errors='raise'):
20562056 Returns
20572057 -------
20582058 dropped : type of caller
2059+
2060+ Examples
2061+ --------
2062+ >>> df = pd.DataFrame([[1, 2, 3, 4],
2063+ ... [5, 6, 7, 8],
2064+ ... [9, 1, 2, 3],
2065+ ... [4, 5, 6, 7]
2066+ ... ],
2067+ ... columns=list('ABCD'))
2068+ >>> df
2069+ A B C D
2070+ 0 1 2 3 4
2071+ 1 5 6 7 8
2072+ 2 9 1 2 3
2073+ 3 4 5 6 7
2074+
2075+ Drop a row by index
2076+
2077+ >>> df.drop([0, 1])
2078+ A B C D
2079+ 2 9 1 2 3
2080+ 3 4 5 6 7
2081+
2082+ Drop columns
2083+
2084+ >>> df.drop(['A', 'B'], axis=1)
2085+ C D
2086+ 0 3 4
2087+ 1 7 8
2088+ 2 2 3
2089+ 3 6 7
20592090 """
20602091 inplace = validate_bool_kwarg (inplace , 'inplace' )
20612092 axis = self ._get_axis_number (axis )
@@ -2169,6 +2200,66 @@ def add_suffix(self, suffix):
21692200 Returns
21702201 -------
21712202 sorted_obj : %(klass)s
2203+
2204+ Examples
2205+ --------
2206+ >>> df = pd.DataFrame({
2207+ ... 'col1' : ['A', 'A', 'B', np.nan, 'D', 'C'],
2208+ ... 'col2' : [2, 1, 9, 8, 7, 4],
2209+ ... 'col3': [0, 1, 9, 4, 2, 3],
2210+ ... })
2211+ >>> df
2212+ col1 col2 col3
2213+ 0 A 2 0
2214+ 1 A 1 1
2215+ 2 B 9 9
2216+ 3 NaN 8 4
2217+ 4 D 7 2
2218+ 5 C 4 3
2219+
2220+ Sort by col1
2221+
2222+ >>> df.sort_values(by=['col1'])
2223+ col1 col2 col3
2224+ 0 A 2 0
2225+ 1 A 1 1
2226+ 2 B 9 9
2227+ 5 C 4 3
2228+ 4 D 7 2
2229+ 3 NaN 8 4
2230+
2231+ Sort by multiple columns
2232+
2233+ >>> df.sort_values(by=['col1', 'col2'])
2234+ col1 col2 col3
2235+ 1 A 1 1
2236+ 0 A 2 0
2237+ 2 B 9 9
2238+ 5 C 4 3
2239+ 4 D 7 2
2240+ 3 NaN 8 4
2241+
2242+ Sort Descending
2243+
2244+ >>> df.sort_values(by='col1', ascending=False)
2245+ col1 col2 col3
2246+ 4 D 7 2
2247+ 5 C 4 3
2248+ 2 B 9 9
2249+ 0 A 2 0
2250+ 1 A 1 1
2251+ 3 NaN 8 4
2252+
2253+ Putting NAs first
2254+
2255+ >>> df.sort_values(by='col1', ascending=False, na_position='first')
2256+ col1 col2 col3
2257+ 3 NaN 8 4
2258+ 4 D 7 2
2259+ 5 C 4 3
2260+ 2 B 9 9
2261+ 0 A 2 0
2262+ 1 A 1 1
21722263 """
21732264
21742265 def sort_values (self , by , axis = 0 , ascending = True , inplace = False ,
@@ -3469,6 +3560,58 @@ def convert_objects(self, convert_dates=True, convert_numeric=False,
34693560 Returns
34703561 -------
34713562 filled : %(klass)s
3563+
3564+ Examples
3565+ --------
3566+ >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
3567+ ... [3, 4, np.nan, 1],
3568+ ... [np.nan, np.nan, np.nan, 5],
3569+ ... [np.nan, 3, np.nan, 4]],
3570+ ... columns=list('ABCD'))
3571+ >>> df
3572+ A B C D
3573+ 0 NaN 2.0 NaN 0
3574+ 1 3.0 4.0 NaN 1
3575+ 2 NaN NaN NaN 5
3576+ 3 NaN 3.0 NaN 4
3577+
3578+ Replace all NaN elements with 0s.
3579+
3580+ >>> df.fillna(0)
3581+ A B C D
3582+ 0 0.0 2.0 0.0 0
3583+ 1 3.0 4.0 0.0 1
3584+ 2 0.0 0.0 0.0 5
3585+ 3 0.0 3.0 0.0 4
3586+
3587+ We can also propagate non-null values forward or backward.
3588+
3589+ >>> df.fillna(method='ffill')
3590+ A B C D
3591+ 0 NaN 2.0 NaN 0
3592+ 1 3.0 4.0 NaN 1
3593+ 2 3.0 4.0 NaN 5
3594+ 3 3.0 3.0 NaN 4
3595+
3596+ Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1,
3597+ 2, and 3 respectively.
3598+
3599+ >>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
3600+ >>> df.fillna(value=values)
3601+ A B C D
3602+ 0 0.0 2.0 2.0 0
3603+ 1 3.0 4.0 2.0 1
3604+ 2 0.0 1.0 2.0 5
3605+ 3 0.0 3.0 2.0 4
3606+
3607+ Only replace the first NaN element.
3608+
3609+ >>> df.fillna(value=values, limit=1)
3610+ A B C D
3611+ 0 0.0 2.0 2.0 0
3612+ 1 3.0 4.0 NaN 1
3613+ 2 NaN 1.0 NaN 5
3614+ 3 NaN 3.0 NaN 4
34723615 """ )
34733616
34743617 @Appender (_shared_docs ['fillna' ] % _shared_doc_kwargs )
0 commit comments