forked from AIcrowd/neurips2019-learning-to-move-starter-kit
-
Notifications
You must be signed in to change notification settings - Fork 3
/
run.py
56 lines (48 loc) · 1.51 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python
import opensim as osim
from osim.redis.client import Client
from osim.env import *
import numpy as np
import argparse
import os
"""
NOTE: For testing your submission scripts, you first need to ensure
that redis-server is running in the background
and you can locally run the grading service by running this script :
https://github.com/stanfordnmbl/osim-rl//blob/master/osim/redis/service.py
The client and the grading service communicate with each other by
pointing to the same redis server.
"""
"""
Please ensure that `visualize=False`, else there might be unexpected errors
in your submission
"""
env = L2M2019Env(visualize=False)
"""
Define evaluator end point from Environment variables
The grader will pass these env variables when evaluating
"""
REMOTE_HOST = os.getenv("AICROWD_EVALUATOR_HOST", "127.0.0.1")
REMOTE_PORT = os.getenv("AICROWD_EVALUATOR_PORT", 6379)
client = Client(
remote_host=REMOTE_HOST,
remote_port=REMOTE_PORT
)
# Create environment
observation = client.env_create()
"""
The grader runs N simulations of at most 1000 steps each.
We stop after the last one
A new simulation starts when `clinet.env_step` returns `done==True`
and all the simulations end when the subsequent `client.env_reset()`
returns a False
"""
while True:
_action = env.action_space.sample().tolist()
[observation, reward, done, info] = client.env_step(_action)
print(observation)
if done:
observation = client.env_reset()
if not observation:
break
client.submit()