-
Notifications
You must be signed in to change notification settings - Fork 9
/
experiments.py
359 lines (313 loc) · 13.1 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
Base classes and functions for experiments.
"""
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.data
import matplotlib.pyplot as plt
from IPython.display import display, clear_output
from ipywidgets import Output
from collections import defaultdict
from tqdm import tqdm
import logging
import warnings
import time
from etn import coordinates, networks, transformers
class Model(object):
def __init__(self,
tfs=[],
coords=coordinates.identity_grid,
net=None,
equivariant=True,
downsample=1,
tf_opts={},
net_opts={},
seed=None,
load_path=None,
loglevel='INFO'):
"""
Model base class.
"""
# configure logging
numeric_level = getattr(logging, loglevel.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError('Invalid log level: %s' % loglevel)
logging.basicConfig(level=numeric_level)
logging.info(str(self))
if load_path is not None:
logging.info('Loading model from file: %s -- using saved model configuration' % load_path)
spec = torch.load(load_path)
tfs = spec['tfs']
coords = spec['coords']
net = spec['net']
equivariant = spec['equivariant']
downsample = spec['downsample']
tf_opts = spec['tf_opts']
net_opts = spec['net_opts']
seed = spec['seed']
if net is None:
raise ValueError('net parameter must be specified')
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
# build transformer sequence
if len(tfs) > 0:
pose_module = networks.EquivariantPosePredictor if equivariant else networks.DirectPosePredictor
tfs = [getattr(transformers, tf) if type(tf) is str else tf for tf in tfs]
seq = transformers.TransformerSequence(*[tf(pose_module, **tf_opts) for tf in tfs])
#seq = transformers.TransformerParallel(*[tf(pose_module, **tf_opts) for tf in tfs])
logging.info('Transformers: %s' % ' -> '.join([tf.__name__ for tf in tfs]))
logging.info('Pose module: %s' % pose_module.__name__)
else:
seq = None
# get coordinate function if given as a string
if type(coords) is str:
if hasattr(coordinates, coords):
coords = getattr(coordinates, coords)
elif hasattr(coordinates, coords + '_grid'):
coords = getattr(coordinates, coords + '_grid')
else:
raise ValueError('Invalid coordinate system: ' + coords)
logging.info('Coordinate transformation before classification: %s' % coords.__name__)
# define network
if type(net) is str:
net = getattr(networks, net)
network = net(**net_opts)
logging.info('Classifier architecture: %s' % net.__name__)
self.tfs = tfs
self.coords = coords
self.downsample = downsample
self.net = net
self.equivariant = equivariant
self.tf_opts = tf_opts
self.net_opts = net_opts
self.seed = seed
self.model = self._build_model(net=network, transformer=seq, coords=coords, downsample=downsample)
logging.info('Net opts: %s' % str(net_opts))
logging.info('Transformer opts: %s' % str(tf_opts))
if load_path is not None:
self.model.load_state_dict(spec['state_dict'])
def _build_model(self, net, transformer, coords, downsample):
return networks.TransformerCNN(
net=net,
transformer=transformer,
coords=coords,
downsample=downsample)
def _save(self, path, **kwargs):
spec = {
'tfs': [tf.__name__ for tf in self.tfs],
'coords': self.coords.__name__,
'net': self.net.__name__,
'equivariant': self.equivariant,
'downsample': self.downsample,
'tf_opts': self.tf_opts,
'net_opts': self.net_opts,
'seed': self.seed,
'state_dict': self.model.state_dict(),
}
spec.update(kwargs)
torch.save(spec, path)
def _load_dataset(self, path, num_examples=None):
# override in subclasses to handle custom preprocessing / different data formats
return Dataset(path=path, num_examples=num_examples)
def train(self,
num_epochs=300,
num_examples=None,
batch_size=128,
valid_batch_size=100,
train_path=None,
valid_path=None,
train_dataset_opts={},
valid_dataset_opts={},
optimizer='Adam',
optimizer_opts={'amsgrad': True, 'lr': 2e-3, 'weight_decay': 0.},
lr_schedule={'step_size': 1, 'gamma': 0.99},
save_path=None,
show_plot=False,
device='cuda:0'):
"""Train the model."""
if save_path is not None:
logging.info('Saving model with lowest validation error to %s' % save_path)
else:
warnings.warn('save_path not specified: model will not be saved')
# load training and validation data
if train_path is None:
raise ValueError('train_path must be specified')
if valid_path is None:
raise ValueError('valid_path must be specified')
logging.info('Loading training data from %s' % train_path)
train_loader = torch.utils.data.DataLoader(
self._load_dataset(
path=train_path,
num_examples=num_examples,
**train_dataset_opts),
shuffle=True,
batch_size=batch_size,
drop_last=True)
logging.info('Loading validation data from %s' % valid_path)
valid_loader = torch.utils.data.DataLoader(
self._load_dataset(
valid_path,
**valid_dataset_opts),
shuffle=False,
batch_size=valid_batch_size,
drop_last=False)
self.model.to(device)
optim = getattr(torch.optim, optimizer)(self.model.parameters(), **optimizer_opts)
scheduler = torch.optim.lr_scheduler.StepLR(optim, **lr_schedule)
if show_plot:
plotter = Plotter(show_plot=True)
plotter.show()
best_err = float('inf')
start_time = time.time()
for i in range(num_epochs):
# train for one epoch
logging.info('Training epoch %d' % (i+1))
train_losses = self._train(optim, scheduler, train_loader, device)
# evaluate on validation set
logging.info('Evaluating model on validation set')
valid_loss, valid_err = self._test(valid_loader, device)
logging.info('Validation loss = %.2e, validation error = %.4f' % (valid_loss, valid_err))
# save model with lowest validation error seen so far
if (save_path is not None) and (valid_err < best_err):
logging.info('Saving model with better validation error: %.2e (previously %.2e)' % (valid_err, best_err))
best_err = valid_err
self._save(save_path, epoch=i+1, valid_err=valid_err)
# update plot
if show_plot:
plotter.update(train_loss=train_losses, valid_loss=valid_loss, valid_err=valid_err)
logging.info('Finished training in %.1f s' % (time.time() - start_time))
return self
def test(self, batch_size=100, test_path=None, test_dataset_opts={}, device='cuda:0'):
"""Test the model."""
if test_path is None:
raise ValueError('test_path must be specified')
logging.info('loading test data from %s' % test_path)
loader = torch.utils.data.DataLoader(
self._load_dataset(
test_path,
**test_dataset_opts),
shuffle=False,
batch_size=batch_size,
drop_last=False)
self.model.to(device)
loss, err_rate = self._test(loader, device)
logging.info('Test loss = %.2e' % loss)
logging.info('Test error = %.4f' % err_rate)
return loss, err_rate
def predict(self, input, device='cuda:0', tf_output=False):
"""Predict a distribution over labels for a single example."""
self.model.eval()
self.model.to(device)
x = input.to(device)
if x.dim() == 3:
x = x.unsqueeze(0)
with torch.no_grad():
out = self.model(x, tf_output=tf_output)
logits = out[0] if tf_output else out
probs = F.softmax(logits.squeeze(0), dim=-1)
if tf_output:
return probs, out[1]
else:
return probs
def _train(self, optim, scheduler, loader, device):
self.model.train()
losses = []
for x, y in tqdm(loader):
x, y = x.to(device), y.to(device)
logits = self.model(x)
loss = F.cross_entropy(logits, y)
optim.zero_grad()
loss.backward()
optim.step()
losses.append(loss.item())
scheduler.step()
return losses
def _test(self, loader, device):
self.model.eval()
total_loss = 0
total_err = 0
count = 0
for x, y in tqdm(loader):
x, y = x.to(device), y.to(device)
count += x.shape[0]
with torch.no_grad():
logits = self.model(x)
yhat = torch.argmax(logits, dim=-1)
total_err += (y != yhat).sum().item()
total_loss += F.cross_entropy(logits, y, reduction='sum').item()
loss = total_loss / count
err_rate = total_err / count
return loss, err_rate
class Dataset(torch.utils.data.Dataset):
def __init__(self, path, num_examples=None, normalization=None):
self.path = path
self.normalization = normalization
self.data, self.targets = torch.load(self.path)
if self.data.dim() == 3:
self.data = self.data.unsqueeze(1) # singleton channel dimension
if num_examples is not None:
self.data = self.data[:num_examples]
self.targets = self.targets[:num_examples].type(torch.long)
if normalization is not None:
mean, std = normalization
mean = torch.Tensor(mean).view(1, -1, 1, 1)
std = torch.Tensor(std).view(1, -1, 1, 1)
self.data.add_(-mean).div_(std)
def __getitem__(self, index):
return self.data[index], self.targets[index]
def __len__(self):
return len(self.data)
class Plotter(object):
def __init__(self, id_string='', width=12, height=2.5, show_plot=True):
"""A dynamic plotting widget for tracking training progress in notebooks."""
self.id_string = id_string
self.width = width
self.height = height
self.output = Output()
self.metrics = defaultdict(list)
self.show_plot = show_plot
def update(self, **metrics):
for k, v in metrics.items():
if type(v) is list:
self.metrics[k] += v
else:
self.metrics[k].append(v)
self.output.clear_output(wait=True)
with self.output:
if self.show_plot:
self.plot()
plt.show()
maxlen = max(map(len, self.metrics.keys()))
print(self.id_string)
for k, v in self.metrics.items():
print(('%' + str(maxlen) + 's') % k,
'| current = %.2e' % v[-1],
'| max = %.2e (iter %4d)' % (np.max(v), np.argmax(v)),
'| min = %.2e (iter %4d)' % (np.min(v), np.argmin(v)))
def show(self):
display(self.output)
def progress_string(self):
s = self.id_string + '\n'
maxlen = max(map(len, self.metrics.keys()))
for k, v in self.metrics.items():
s += ''.join([('%' + str(maxlen) + 's') % k,
'| current = %.2e' % v[-1],
'| max = %.2e (iter %4d)' % (np.max(v), np.argmax(v)),
'| min = %.2e (iter %4d)' % (np.min(v), np.argmin(v))])
s += '\n'
return s
def plot(self):
fig = plt.figure(figsize=(self.width, self.height * len(self.metrics)))
axs = fig.subplots(len(self.metrics))
fig.suptitle(self.id_string)
if len(self.metrics) == 1:
axs = [axs]
for ax, (k, v) in zip(axs, self.metrics.items()):
ax.plot(v)
ax.grid()
ax.set_title(k)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
return fig