-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo.py
265 lines (222 loc) · 10 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from PIL import Image
import base64
from io import BytesIO
from click4caption.common.config import Config
from click4caption.common.dist_utils import get_rank
from click4caption.common.registry import registry
from click4caption.conversation.conversation import Chat, CONV_VISION
# imports modules for registration
from click4caption.datasets.builders import *
from click4caption.models import *
from click4caption.processors import *
from click4caption.runners import *
from click4caption.tasks import *
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--port", type=int)
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
model = model.eval()
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
model_image_size = vis_processor_cfg.image_size
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list, tl_x, tl_y, br_x, br_y, is_top_left):
if chat_state is not None:
# chat_state.messages = []
chat_state = None
if img_list is not None:
# img_list = []
img_list = None
tl_x, tl_y, br_x, br_y = -1, -1, -1, -1
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False), gr.update(value="Upload for QA", interactive=True), chat_state, img_list, tl_x, tl_y, br_x, br_y, True
def upload_img(gr_img, text_input, chat_state, tl_x, tl_y, br_x, br_y, img_list, chatbot):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
if chat_state is None:
chat_state = CONV_VISION.copy()
if img_list is None:
img_list = []
# process the coords
tl_x = 0 if tl_x < 0 else tl_x
tl_y = 0 if tl_y < 0 else tl_y
br_x = gr_img.size[0] if br_x < 0 else br_x
br_y = gr_img.size[1] if br_y < 0 else br_y
x_scale = model_image_size / gr_img.size[0]
y_scale = model_image_size / gr_img.size[1]
# upload
llm_message = chat.upload_img(gr_img, chat_state, img_list, tl_x*x_scale, tl_y*y_scale, br_x*x_scale, br_y*y_scale)
# draw bbox on img and show in chatbot
_img = np.array(gr_img.copy())
line_width = int((gr_img.size[0]+gr_img.size[1])/224)
_img[tl_y:tl_y+line_width, tl_x:br_x] = np.array([255, 0, 0])
_img[br_y-line_width+1:br_y+1, tl_x:br_x] = np.array([255, 0, 0])
_img[tl_y:br_y, tl_x:tl_x+line_width] = np.array([255, 0, 0])
_img[tl_y:br_y, br_x-line_width+1:br_x+1] = np.array([255, 0, 0])
_img = Image.fromarray(_img)
buffered = BytesIO()
_img.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
# chatbot = chatbot + [[img_str, llm_message]]
chatbot = chatbot + [[img_str, None]]
return gr_img, gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Upload More"), chat_state, img_list, chatbot
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300, # 800,
max_length=2000)[0]
chatbot[-1][1] = llm_message
return chatbot, chat_state, img_list
def gradio_describe(interaction_mode, is_top_left, gr_img, chatbot, tl_x, tl_y, br_x, br_y, num_beams, temperature):
if interaction_mode == "QA":
return chatbot
if not is_top_left: # clear chat history
return None
_, _, _, chat_state, img_list, chatbot = upload_img(gr_img, None, None, tl_x, tl_y, br_x, br_y, None, chatbot)
user_message = "image[IMG] Tell me what it is and write a description for it."
_, chatbot, chat_state = gradio_ask(user_message, chatbot, chat_state)
chatbot, chat_state, img_list = gradio_answer(chatbot, chat_state, img_list, num_beams, temperature)
return chatbot
title = """<h1 align="center">Click4Caption</h1>"""
description = """Gradio demo for [Click4Caption](https://github.com/ssppp/Click4Caption). Please refer to README for detailed instructions.
"""
#TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
upload_button = gr.Button(value="Upload for QA", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="Beam search numbers",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
interaction_mode = gr.Radio(
choices=["Describe", "QA"],
value="Describe",
label="Interaction mode",
interactive=True,
)
is_top_left = gr.Radio(
choices=[True, False],
value=True,
label="Is selecting top-left coord (True) or bottom-right (False)",
interactive=True,
)
with gr.Row():
tl_x = gr.Number(
value=-1, # -1 stands for using the whole figure
interactive=True,
label="top-left x",
min_width=60,
precision=0,
)
tl_y = gr.Number(
value=-1,
interactive=True,
label="top-left y",
min_width=60,
precision=0,
)
br_x = gr.Number(
value=-1,
interactive=True,
label="bottom-right x",
min_width=60,
precision=0,
)
br_y = gr.Number(
value=-1,
interactive=True,
label="bottom-right y",
min_width=60,
precision=0,
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='Chatbot')
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
upload_button.click(upload_img, [image, text_input, chat_state, tl_x, tl_y, br_x, br_y, img_list, chatbot], [image, text_input, upload_button, chat_state, img_list, chatbot])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list, tl_x, tl_y, br_x, br_y, is_top_left],
[chatbot, image, text_input, upload_button, chat_state, img_list, tl_x, tl_y, br_x, br_y, is_top_left], queue=False)
def get_point(img, tl_x, tl_y, br_x, br_y, is_top_left, evt: gr.SelectData):
# print(f"image shape: {img.size}")
x, y = evt.index
if is_top_left:
tl_x, tl_y = x, y
is_top_left = False
else:
br_x, br_y = x, y
is_top_left = True
return tl_x, tl_y, br_x, br_y, is_top_left
image.select(get_point, [image, tl_x, tl_y, br_x, br_y, is_top_left], [tl_x, tl_y, br_x, br_y, is_top_left]).then(
gradio_describe, [interaction_mode, is_top_left, image, chatbot, tl_x, tl_y, br_x, br_y, num_beams, temperature], [chatbot]
)
interaction_mode.change(gradio_reset, [chat_state, img_list, tl_x, tl_y, br_x, br_y, is_top_left],
[chatbot, image, text_input, upload_button, chat_state, img_list, tl_x, tl_y, br_x, br_y, is_top_left], queue=False)
demo.launch(share=True, enable_queue=True)
# demo.launch(server_name='0.0.0.0', server_port=args.port, share=False, enable_queue=True)