-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathepsilon_separation.sage
56 lines (44 loc) · 1.53 KB
/
epsilon_separation.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from scipy.spatial import distance
from itertools import chain
def eigenform_scaled(N,P):
""""Give system of scaled eigenvalues for Gamma0(N).
Give tuple [a_p/sqrt(p)] for primes p < P for each eigenform,
but discard Eisenstein space."""
E=numerical_eigenforms(N).systems_of_eigenvalues(P)[:-1]
prim=primes(P)
for j,p in enumerate(prim):
for i in range(len(E)):
E[i][j] = E[i][j]/float(sqrt(p))
return E
def mindist(d):
"""Compute minimum distance in list of vectors.
Given matrix whose rows are v1,..,vm in Rn,
output smallest |vi - vj|, i != j."""
y = np.array(d)
x=distance.pdist(y)
return x[x.argmin()]
def epsilon_separation(N,P=0):
"""Compute minimum distance between serial numbers.
Take vector of a_p/sqrt(p) where p are primes up to P
for eigenforms of Gamma0(N).
Use Euclidean metric."""
if P==0:
P=int(log(N,2).n())
return mindist(cstors(exxplist(eigenform_scaled(N,P))))
def es_range(a,b):
"""Compute epsilon separation for primes in range.
Primes vary from a to b.
Compute prime coeffs up to log_2(N)."""
for N in primes(a,b):
print(N,epsilon_separation(N))
return
def exxp(z):
return exp(I*z).n()
def exxplist(d):
return [list(map(exxp,i)) for i in d]
def cstors(D):
"""Separate complex numbers into real and imaginary parts.
Input list [z1,z2,...] and output
[Re(z1),Re(z2),...,Im(z1),Im(z2),..]."""
return [list(chain(map(real,i),map(imaginary,i))) for i in D]