forked from ariseff/overcoming-catastrophic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiment_54.py
313 lines (246 loc) · 13.1 KB
/
experiment_54.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# coding: utf-8
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import sys
import h5py
from copy import deepcopy
from tensorflow.examples.tutorials.mnist import input_data
from model_54 import Model
# return a new mnist dataset w/ pixels randomly permuted
def permute_mnist(mnist):
perm_inds = range(mnist.train.images.shape[1])
np.random.shuffle(perm_inds)
mnist2 = deepcopy(mnist)
sets = ["train", "validation", "test"]
for set_name in sets:
this_set = getattr(mnist2, set_name) # shallow copy
this_set._images = np.transpose(np.array(
[this_set.images[:,c] for c in perm_inds]))
return mnist2
def permute_mnist_random(mnist, percent):
old_pixels = np.array(range(mnist.train.images.shape[1]))
new_pixels = np.array(range(mnist.train.images.shape[1]))
np.random.shuffle(new_pixels)
locations = np.random.choice(range(len(old_pixels)), int(len(old_pixels) - (len(old_pixels) * float(percent))), replace=False)
for pixel in locations:
new_pixels[pixel] = old_pixels[pixel]
mnist2 = deepcopy(mnist)
sets = ["train", "validation", "test"]
for set_name in sets:
this_set = getattr(mnist2, set_name) # shallow copy
this_set._images = np.transpose(np.array([this_set.images[:,c] for c in new_pixels]))
return mnist2
# train/compare vanilla sgd and ewc
def train_task(model, sess, num_iter, disp_freq, trainset, testsets, x, y_, acc_sgd,
acc_ewc, final_means, figNum, F_archives, tasks, lams=[0], expanding=False):
# lams[l] sets weight on old task(s)
# l == 0 coincides with vanilla SGD training
expanded_already = False
for l in range(len(lams)):
# if network has just expanded before this training run AND this is the
# first time the training is occuring in the lams[l] loop,
# restore the weights from old tasks to the first half of the new
# weights in the expanded (doubled capacity) network
if expanding == True and expanded_already == False:
model.restore(sess, expanding=True)
expanded_already = True
# otherwise, simply restore the weights from the last model.star() call
# to the entire tensors constituting the weights in existing network
else:
model.restore(sess)
dims_list = []
for var in range(len(model.var_list)):
dims_list.append(list(model.var_list[var].eval().shape))
dim_dict[tasks] = dims_list
if(lams[l] == 0):
model.set_vanilla_loss()
acc_array = acc_sgd
else:
model.update_ewc_loss(lams[l], F_archives, dim_dict)
acc_array = acc_ewc
# initialize test accuracy array holding all tasks for given lams[l]
test_accs = np.zeros((40, len(testsets)))
# train on all tasks for given number of iterations
for iteration in range(num_iter):
batch = trainset.train.next_batch(100)
model.train_step.run(feed_dict={x: batch[0], y_: batch[1]})
if hasattr(model, 'penalty'):
if lams[l] != 0 and iteration == num_iter - 1:
penalties.append(model.penalty.eval(feed_dict={x: batch[0], y_: batch[1]}))
print('EWC', model.penalty.eval(feed_dict={x: batch[0], y_: batch[1]}))
# controls how frequently to save accuracy for display in graph
if iteration % disp_freq == 0:
for task in range(len(testsets)):
feed_dict={x: testsets[task].test.images, y_: testsets[task].test.labels}
"""
slice_vars = []
slicer = dim_dict[task + 1]
for tensor in range(len(model.var_list) - 1):
if tensor % 2 == 0:
slice_vars.append(tf.slice(model.var_list[tensor], [0,0], slicer[tensor]))
else:
slice_vars.append(tf.slice(model.var_list[tensor], [0], slicer[tensor]))
alt_architecture = []
alt_architecture.append(x)
count = 0
for j in range(len(model.architecture) - 2):
alt_architecture.append(tf.nn.relu(tf.matmul(alt_architecture[j], slice_vars[j + count]) + slice_vars[j + count + 1]))
count += 1
alt_architecture.append(tf.matmul(alt_architecture[len(alt_architecture) - 1], slice_vars[len(slice_vars) - 1]) + model.var_list[len(model.var_list) - 1])
alt_correct_prediction = tf.equal(tf.argmax(alt_architecture[len(alt_architecture) - 1],1), tf.argmax(y_,1))
alt_accuracy = tf.reduce_mean(tf.cast(alt_correct_prediction, tf.float32))
test_accs[iter/disp_freq][task] = alt_accuracy.eval(feed_dict=feed_dict)
"""
test_accs[iteration/disp_freq][task] = model.accuracy.eval(feed_dict=feed_dict)
for taskNumber in range(len(testsets)):
dataFile.create_dataset('count {} task {} lambda {} run {}'.format(str(len(testsets)), str(taskNumber + 1), str(lams[l]), str(run + 1)), data=test_accs[:,taskNumber])
#storing accuracy data for plotting
accSum = 0
accSumOld = 0
#take the last accuracy reading for each task and add it to accSum
for taskColumn in range(len(test_accs[0])):
accSum += test_accs[iteration/disp_freq - 1, taskColumn]
for taskColumnOld in range(len(test_accs[0]) - 1):
accSumOld += test_accs[iteration/disp_freq - 1, taskColumn]
if len(testsets) > 1:
avg_acc_old_tasks.append(accSumOld / float(len(test_accs[0]) - 1))
acc_most_recent_task.append(test_accs[len(test_accs) - 1][len(test_accs[len(test_accs) - 1]) - 1])
#append the average of all of the last task accuracy readings
#to the acc_array for SGD or EWC depending on loop
#*this is what you see in the graph*
acc_array.append(accSum / float(len(test_accs[0])))
#if this is the first training run, simply set the first task EWC
#accuracy equal to the first task accuracy for SGD
if len(lams) == 1:
acc_ewc.append(accSum / float(len(test_accs[0])))
#this merely shifts the data in acc_sgd and acc_ewc forward one index
#so that it aligns with task number in graph (starting at 1 task)
sgdList = [0]
ewcList = [0]
for listIndex in range(len(acc_sgd)):
sgdList.append(acc_sgd[listIndex])
ewcList.append(acc_ewc[listIndex])
"""
#plot average accuracy over all taks for both SGD and EWC
plt.figure(num=figNum[0], figsize=(20,10))
plot1 = plt.subplot(121)
plot1.set_title("layers: {} weights per layer: {} lambda: {} percent permutation: {} permutation type: {} run: {}".format(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5], str(run + 1)))
plt.plot(sgdList, label="sgd")
plt.plot(ewcList, label="ewc")
plt.xlabel('tasks')
plt.ylabel('average accuracy')
plt.axis([1, 25, 0.75, 0.95])
plt.legend(loc=3)
"""
#plotting Fisher data if available
if hasattr(model, "F_accum"):
means_list = []
for diag in range(len(model.F_accum)):
diag_sum = 0
elementCount = 0
fim_diagonal = model.F_accum[diag]
for row in range(len(fim_diagonal)):
if diag % 2 == 0:
for col in range(len(fim_diagonal[row])):
diag_sum += fim_diagonal[row][col]
elementCount += 1
else:
diag_sum += fim_diagonal[row]
elementCount += 1
means_list.append(diag_sum / float(elementCount))
fisher_most_recent.append(np.sum(means_list)/ float(len(means_list)))
final_means.append(final_means[len(final_means) - 1] + np.sum(means_list)/ float(len(means_list)))
"""
plot2 = plt.subplot(122)
plot2.set_title("layers: {} weights per layer: {} lambda: {} percent permutation: {} permutation type: {} run: {}".format(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5], str(run + 1)))
plt.plot(final_means, label="Fisher")
plt.xlabel('tasks')
plt.ylabel('Average Fisher Information Diagonal Mean')
plt.axis([1, 25, 0, 0.75])
plt.savefig(sys.argv[6])
plt.close()
figNum[0] += 1
"""
if len(testsets) > 1 and avg_acc_old_tasks[len(avg_acc_old_tasks) - 1] < 0.1:
dataFile.create_dataset('average old task accuracy lambda {} run {}'.format(lams[l], str(run + 1)), data=avg_acc_old_tasks)
dataFile.create_dataset('most recent task accuracy lambda {} run {}'.format(lams[l], str(run + 1)), data=acc_most_recent_task)
dataFile.create_dataset('fisher sum run {}'.format(str(run + 1)), data=final_means)
dataFile.create_dataset('most recent fisher run {}'.format(str(run + 1)), data=fisher_most_recent)
dataFile.create_dataset('penalties run {}'.format(str(run + 1)), data=penalties)
run_over[0] = 1
if run == int(int(sys.argv[8]) - 1):
dataFile.close()
sess.close()
sys.exit()
dataFile = h5py.File(sys.argv[7], 'w')
dataFile.create_dataset('params', data=sys.argv[1:])
for run in range(int(sys.argv[8])):
#initial MNIST data read-in
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# define input and target placeholders
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
#network initial node count
cur_weights = sys.argv[2]
#construct a new Model
model = Model(x, y_, int(sys.argv[2]), int(sys.argv[1]))
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
#install sess as the TensorFlow default session and initialize all variables
#in the model
sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))
sess.run(tf.global_variables_initializer())
#holds all of the mnist permutations, including the original dataset
mnistList = [mnist]
#used to track task count in training/testing loop
tasks = 0
acc_sgd = []
acc_ewc = []
final_means = [0]
figNum = [1]
F_archives = []
dim_dict = {}
lambdas = [0, float(sys.argv[3])]
avg_acc_old_tasks = [0, 0]
acc_most_recent_task = [0, 0]
fisher_most_recent = [0]
penalties = [0, 0]
run_over = [0]
for i in range(100):
tasks += 1
print(dim_dict)
if tasks == 1:
train_task(model, sess, 800, 20, mnistList[len(mnistList) - 1], mnistList, x, y_, acc_sgd, acc_ewc, final_means, figNum, F_archives, tasks, lams=[0])
elif tasks == 100:
for FIM in range(len(model.F_accum) - 1):
append_axis = -1
both_axes = False
if FIM == 0:
append_axis = 1
elif FIM == len(model.F_accum) - 2:
append_axis = 0
elif FIM % 2 != 0:
append_axis = 0
else:
both_axes = True
if both_axes == False:
model.F_accum[FIM] = np.append(model.F_accum[FIM], np.zeros(tuple(model.F_accum[FIM].shape)), axis=append_axis)
else:
model.F_accum[FIM] = np.append(model.F_accum[FIM], np.zeros(tuple(model.F_accum[FIM].shape)), axis=0)
model.F_accum[FIM] = np.append(model.F_accum[FIM], np.zeros(tuple(model.F_accum[FIM].shape)), axis=1)
F_archives[len(F_archives) - 1] = model.F_accum
train_task(model, sess, 800, 20, mnistList[len(mnistList) - 1], mnistList, x, y_, acc_sgd, acc_ewc, final_means, figNum, F_archives, tasks, lams=lambdas, expanding=True)
cur_weights *= 2
else:
train_task(model, sess, 800, 20, mnistList[len(mnistList) - 1], mnistList, x, y_, acc_sgd, acc_ewc, final_means, figNum, F_archives, tasks, lams=lambdas)
if run_over[0] == 1:
sess.close()
break
model.compute_fisher(mnistList[len(mnistList) - 1].validation.images, sess, F_archives, num_samples=200)
model.star()
if sys.argv[5] == "travel":
mnistList.append(permute_mnist_random(mnistList[len(mnistList) - 1], float(float(sys.argv[4])/100.0)))
elif sys.argv[5] == "spread":
mnistList.append(permute_mnist_random(mnistList[0], float(float(sys.argv[4])/100.0)))
else:
print("NO PERMUTATION METHOD SPECIFIED")