-
Notifications
You must be signed in to change notification settings - Fork 0
/
alexnet.py
100 lines (74 loc) · 3.75 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch.nn as nn
import torch.nn
import torch.utils.model_zoo as model_zoo
__all__ = ['AlexNet', 'alexnet']
model_urls = {
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}
class AlexNet(nn.Module):
def __init__(self, filters=8, num_classes=100):
"""
Constructor for AlexNet architecture of varying sizes (For use with CIFAR).
Sizes of layers not specified by parameters are automatically adjusted accordingly.
Parameters:
filters (int): number of convolutional filters applied by the first convolutional layer
(the out_channels from that layer)
classification_width (int): the width of both of the linear (dense, fully connected)
layers used for mapping features to predictions
num_classes (int): width of the output layer (predictions)- number of classes in
classification problem
"""
print(torch.randint(1, 10000, (1,), device=torch.device('cpu')))
print(torch.randint(1, 10000, (1,), device=torch.device('cuda')))
CLASSIFICATION_STARTING_WIDTH = 256
CLASSIFICATION_SCALE_FACTOR = 256
FILTERS_START = 8
FILTER_EXPANSION = 8 # TODO replace this with a pass-through of args.scale_factor
super(AlexNet, self).__init__()
self.filters = filters
# scale dense layers' widths by CLASSIFICATION_SCALE_FACTOR each time filters expands
# NOTE: now we're just adding, not multiplying by, CLASSIFICATION SCALE FACTOR
classification_width = \
(CLASSIFICATION_SCALE_FACTOR * ((filters - FILTERS_START) // FILTER_EXPANSION)) + CLASSIFICATION_STARTING_WIDTH
# TODO remove this - this is to prevent filters from expanding but maintain the
# expansion of the classification width correctly
# filters = FILTERS_START
self.features = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=filters, kernel_size=11, stride=4, padding=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=filters, out_channels=filters*3, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=filters*3, out_channels=filters*6, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=filters*6, out_channels=filters*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=filters*4, out_channels=filters*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=1),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(in_features=filters*4, out_features=classification_width),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(in_features=classification_width, out_features=classification_width),
nn.ReLU(inplace=True),
nn.Linear(in_features=classification_width, out_features=num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def alexnet(pretrained=False, **kwargs):
r"""AlexNet model architecture from the
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = AlexNet(**kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['alexnet']))
return model