-
Notifications
You must be signed in to change notification settings - Fork 291
/
Copy pathinference.py
587 lines (505 loc) · 22 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#!/usr/bin/env python
# encoding: utf-8
#
# Copyright 2022 Spotify AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import enum
import json
import logging
import os
import pathlib
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union, cast
from basic_pitch import CT_PRESENT, ICASSP_2022_MODEL_PATH, ONNX_PRESENT, TF_PRESENT, TFLITE_PRESENT
try:
import tensorflow as tf
except ImportError:
pass
try:
import coremltools as ct
except ImportError:
pass
try:
import tflite_runtime.interpreter as tflite
except ImportError:
if TF_PRESENT:
import tensorflow.lite as tflite
try:
import onnxruntime as ort
except ImportError:
pass
import numpy as np
import numpy.typing as npt
import librosa
import pretty_midi
from basic_pitch.constants import (
AUDIO_SAMPLE_RATE,
AUDIO_N_SAMPLES,
ANNOTATIONS_FPS,
FFT_HOP,
)
from basic_pitch.commandline_printing import (
generating_file_message,
no_tf_warnings,
file_saved_confirmation,
failed_to_save,
)
import basic_pitch.note_creation as infer
class Model:
class MODEL_TYPES(enum.Enum):
TENSORFLOW = enum.auto()
COREML = enum.auto()
TFLITE = enum.auto()
ONNX = enum.auto()
def __init__(self, model_path: Union[pathlib.Path, str]):
present = []
if TF_PRESENT:
present.append("TensorFlow")
try:
self.model_type = Model.MODEL_TYPES.TENSORFLOW
self.model = tf.saved_model.load(str(model_path))
return
except Exception as e:
if os.path.isdir(model_path) and {"saved_model.pb", "variables"} & set(os.listdir(model_path)):
logging.warning(
"Could not load TensorFlow saved model %s even "
"though it looks like a saved model file with error %s. "
"Are you sure it's a TensorFlow saved model?",
model_path,
e.__repr__(),
)
if CT_PRESENT:
present.append("CoreML")
try:
self.model_type = Model.MODEL_TYPES.COREML
self.model = ct.models.MLModel(str(model_path), compute_units=ct.ComputeUnit.CPU_ONLY)
return
except Exception as e:
if str(model_path).endswith(".mlpackage"):
logging.warning(
"Could not load CoreML file %s even "
"though it looks like a CoreML file with error %s. "
"Are you sure it's a CoreML file?",
model_path,
e.__repr__(),
)
if TFLITE_PRESENT or TF_PRESENT:
present.append("TensorFlowLite")
try:
self.model_type = Model.MODEL_TYPES.TFLITE
self.interpreter = tflite.Interpreter(str(model_path))
self.model = self.interpreter.get_signature_runner()
return
except Exception as e:
if str(model_path).endswith(".tflite"):
logging.warning(
"Could not load TensorFlowLite file %s even "
"though it looks like a TFLite file with error %s. "
"Are you sure it's a TFLite file?",
model_path,
e.__repr__(),
)
if ONNX_PRESENT:
present.append("ONNX")
try:
self.model_type = Model.MODEL_TYPES.ONNX
providers = ["CPUExecutionProvider"]
if "CUDAExecutionProvider" in ort.get_available_providers():
providers.insert(0, "CUDAExecutionProvider")
self.model = ort.InferenceSession(str(model_path), providers=providers)
return
except Exception as e:
if str(model_path).endswith(".onnx"):
logging.warning(
"Could not load ONNX file %s even "
"though it looks like a ONNX file with error %s. "
"Are you sure it's a ONNX file?",
model_path,
e.__repr__(),
)
raise ValueError(
f"File {model_path} cannot be loaded into either "
"TensorFlow, CoreML, TFLite or ONNX. "
"Please check if it is a supported and valid serialized model "
"and that one of these packages are installed. On this system, "
f"{present} is installed."
)
def predict(self, x: npt.NDArray[np.float32]) -> Dict[str, npt.NDArray[np.float32]]:
if self.model_type == Model.MODEL_TYPES.TENSORFLOW:
return {k: v.numpy() for k, v in cast(tf.keras.Model, self.model(x)).items()}
elif self.model_type == Model.MODEL_TYPES.COREML:
result = cast(ct.models.MLModel, self.model).predict({"input_2": x})
return {
"note": result["Identity_1"],
"onset": result["Identity_2"],
"contour": result["Identity"],
}
elif self.model_type == Model.MODEL_TYPES.TFLITE:
return self.model(input_2=x) # type: ignore
elif self.model_type == Model.MODEL_TYPES.ONNX:
return {
k: v
for k, v in zip(
["note", "onset", "contour"],
cast(ort.InferenceSession, self.model).run(
[
"StatefulPartitionedCall:1",
"StatefulPartitionedCall:2",
"StatefulPartitionedCall:0",
],
{"serving_default_input_2:0": x},
),
)
}
def window_audio_file(
audio_original: npt.NDArray[np.float32], hop_size: int
) -> Iterable[Tuple[npt.NDArray[np.float32], Dict[str, float]]]:
"""
Pad appropriately an audio file, and return as
windowed signal, with window length = AUDIO_N_SAMPLES
Returns:
audio_windowed: tensor with shape (n_windows, AUDIO_N_SAMPLES, 1)
audio windowed into fixed length chunks
window_times: list of {'start':.., 'end':...} objects (times in seconds)
"""
for i in range(0, audio_original.shape[0], hop_size):
window = audio_original[i : i + AUDIO_N_SAMPLES]
if len(window) < AUDIO_N_SAMPLES:
window = np.pad(
window,
pad_width=[[0, AUDIO_N_SAMPLES - len(window)]],
)
t_start = float(i) / AUDIO_SAMPLE_RATE
window_time = {
"start": t_start,
"end": t_start + (AUDIO_N_SAMPLES / AUDIO_SAMPLE_RATE),
}
yield np.expand_dims(window, axis=-1), window_time
def get_audio_input(
audio_path: Union[pathlib.Path, str], overlap_len: int, hop_size: int
) -> Iterable[Tuple[npt.NDArray[np.float32], Dict[str, float], int]]:
"""
Read wave file (as mono), pad appropriately, and return as
windowed signal, with window length = AUDIO_N_SAMPLES
Returns:
audio_windowed: tensor with shape (n_windows, AUDIO_N_SAMPLES, 1)
audio windowed into fixed length chunks
window_times: list of {'start':.., 'end':...} objects (times in seconds)
audio_original_length: int
length of original audio file, in frames, BEFORE padding.
"""
assert overlap_len % 2 == 0, f"overlap_length must be even, got {overlap_len}"
audio_original, _ = librosa.load(str(audio_path), sr=AUDIO_SAMPLE_RATE, mono=True)
original_length = audio_original.shape[0]
audio_original = np.concatenate([np.zeros((int(overlap_len / 2),), dtype=np.float32), audio_original])
for window, window_time in window_audio_file(audio_original, hop_size):
yield np.expand_dims(window, axis=0), window_time, original_length
def unwrap_output(
output: npt.NDArray[np.float32],
audio_original_length: int,
n_overlapping_frames: int,
) -> np.array:
"""Unwrap batched model predictions to a single matrix.
Args:
output: array (n_batches, n_times_short, n_freqs)
audio_original_length: length of original audio signal (in samples)
n_overlapping_frames: number of overlapping frames in the output
Returns:
array (n_times, n_freqs)
"""
if len(output.shape) != 3:
return None
n_olap = int(0.5 * n_overlapping_frames)
if n_olap > 0:
# remove half of the overlapping frames from beginning and end
output = output[:, n_olap:-n_olap, :]
output_shape = output.shape
n_output_frames_original = int(np.floor(audio_original_length * (ANNOTATIONS_FPS / AUDIO_SAMPLE_RATE)))
unwrapped_output = output.reshape(output_shape[0] * output_shape[1], output_shape[2])
return unwrapped_output[:n_output_frames_original, :] # trim to original audio length
def run_inference(
audio_path: Union[pathlib.Path, str],
model_or_model_path: Union[Model, pathlib.Path, str],
debug_file: Optional[pathlib.Path] = None,
) -> Dict[str, np.array]:
"""Run the model on the input audio path.
Args:
audio_path: The audio to run inference on.
model_or_model_path: A loaded Model or path to a serialized model to load.
debug_file: An optional path to output debug data to. Useful for testing/verification.
Returns:
A dictionary with the notes, onsets and contours from model inference.
"""
if isinstance(model_or_model_path, Model):
model = model_or_model_path
else:
model = Model(model_or_model_path)
# overlap 30 frames
n_overlapping_frames = 30
overlap_len = n_overlapping_frames * FFT_HOP
hop_size = AUDIO_N_SAMPLES - overlap_len
output: Dict[str, Any] = {"note": [], "onset": [], "contour": []}
for audio_windowed, _, audio_original_length in get_audio_input(audio_path, overlap_len, hop_size):
for k, v in model.predict(audio_windowed).items():
output[k].append(v)
unwrapped_output = {
k: unwrap_output(np.concatenate(output[k]), audio_original_length, n_overlapping_frames) for k in output
}
if debug_file:
with open(debug_file, "w") as f:
json.dump(
{
"audio_windowed": audio_windowed.numpy().tolist(),
"audio_original_length": audio_original_length,
"hop_size_samples": hop_size,
"overlap_length_samples": overlap_len,
"unwrapped_output": {k: v.tolist() for k, v in unwrapped_output.items()},
},
f,
)
return unwrapped_output
class OutputExtensions(enum.Enum):
MIDI = "mid"
MODEL_OUTPUT_NPZ = "npz"
MIDI_SONIFICATION = "wav"
NOTE_EVENTS = "csv"
def verify_input_path(audio_path: Union[pathlib.Path, str]) -> None:
"""Verify that an input path is valid and can be processed
Args:
audio_path: Path to an audio file.
Raises:
ValueError: If the audio file is invalid.
"""
if not os.path.isfile(audio_path):
raise ValueError(f"🚨 {audio_path} is not a file path.")
if not os.path.exists(audio_path):
raise ValueError(f"🚨 {audio_path} does not exist.")
def verify_output_dir(output_dir: Union[pathlib.Path, str]) -> None:
"""Verify that an output directory is valid and can be processed
Args:
output_dir: Path to an output directory.
Raises:
ValueError: If the output directory is invalid.
"""
if not os.path.isdir(output_dir):
raise ValueError(f"🚨 {output_dir} is not a directory.")
if not os.path.exists(output_dir):
raise ValueError(f"🚨 {output_dir} does not exist.")
def build_output_path(
audio_path: Union[pathlib.Path, str],
output_directory: Union[pathlib.Path, str],
output_type: OutputExtensions,
) -> pathlib.Path:
"""Create an output path and make sure it doesn't already exist.
Args:
audio_path: The original file path.
output_directory: The directory we will output to.
output_type: The type of output file we are creating.
Raises:
IOError: If the generated path already exists.
Returns:
A new path in the output_directory with the stem audio_path and an extension
based on output_type.
"""
audio_path = str(audio_path)
if not isinstance(output_directory, pathlib.Path):
output_directory = pathlib.Path(output_directory)
basename, _ = os.path.splitext(os.path.basename(audio_path))
output_path = output_directory / f"{basename}_basic_pitch.{output_type.value}"
generating_file_message(output_type.name)
if output_path.exists():
raise IOError(
f" 🚨 {str(output_path)} already exists and would be overwritten. Skipping output files for {audio_path}."
)
return output_path
def save_note_events(
note_events: List[Tuple[float, float, int, float, Optional[List[int]]]],
save_path: Union[pathlib.Path, str],
) -> None:
"""Save note events to file
Args:
note_events: A list of note event tuples to save. Tuples have the format
("start_time_s", "end_time_s", "pitch_midi", "velocity", "list of pitch bend values")
save_path: The location we're saving it
"""
with open(save_path, "w") as fhandle:
writer = csv.writer(fhandle, delimiter=",")
writer.writerow(["start_time_s", "end_time_s", "pitch_midi", "velocity", "pitch_bend"])
for start_time, end_time, note_number, amplitude, pitch_bend in note_events:
row = [start_time, end_time, note_number, int(np.round(127 * amplitude))]
if pitch_bend:
row.extend(pitch_bend)
writer.writerow(row)
def predict(
audio_path: Union[pathlib.Path, str],
model_or_model_path: Union[Model, pathlib.Path, str] = ICASSP_2022_MODEL_PATH,
onset_threshold: float = 0.5,
frame_threshold: float = 0.3,
minimum_note_length: float = 127.70,
minimum_frequency: Optional[float] = None,
maximum_frequency: Optional[float] = None,
multiple_pitch_bends: bool = False,
melodia_trick: bool = True,
debug_file: Optional[pathlib.Path] = None,
midi_tempo: float = 120,
) -> Tuple[
Dict[str, np.array],
pretty_midi.PrettyMIDI,
List[Tuple[float, float, int, float, Optional[List[int]]]],
]:
"""Run a single prediction.
Args:
audio_path: File path for the audio to run inference on.
model_or_model_path: A loaded Model or path to a serialized model to load.
onset_threshold: Minimum energy required for an onset to be considered present.
frame_threshold: Minimum energy requirement for a frame to be considered present.
minimum_note_length: The minimum allowed note length in milliseconds.
minimum_freq: Minimum allowed output frequency, in Hz. If None, all frequencies are used.
maximum_freq: Maximum allowed output frequency, in Hz. If None, all frequencies are used.
multiple_pitch_bends: If True, allow overlapping notes in midi file to have pitch bends.
melodia_trick: Use the melodia post-processing step.
debug_file: An optional path to output debug data to. Useful for testing/verification.
Returns:
The model output, midi data and note events from a single prediction
"""
with no_tf_warnings():
print(f"Predicting MIDI for {audio_path}...")
model_output = run_inference(audio_path, model_or_model_path, debug_file)
min_note_len = int(np.round(minimum_note_length / 1000 * (AUDIO_SAMPLE_RATE / FFT_HOP)))
midi_data, note_events = infer.model_output_to_notes(
model_output,
onset_thresh=onset_threshold,
frame_thresh=frame_threshold,
min_note_len=min_note_len, # convert to frames
min_freq=minimum_frequency,
max_freq=maximum_frequency,
multiple_pitch_bends=multiple_pitch_bends,
melodia_trick=melodia_trick,
midi_tempo=midi_tempo,
)
if debug_file:
with open(debug_file) as f:
debug_data = json.load(f)
with open(debug_file, "w") as f:
json.dump(
{
**debug_data,
"min_note_length": min_note_len,
"onset_thresh": onset_threshold,
"frame_thresh": frame_threshold,
"estimated_notes": [
(
float(start_time),
float(end_time),
int(pitch),
float(amplitude),
[int(b) for b in pitch_bends] if pitch_bends else None,
)
for start_time, end_time, pitch, amplitude, pitch_bends in note_events
],
},
f,
)
return model_output, midi_data, note_events
def predict_and_save(
audio_path_list: Sequence[Union[pathlib.Path, str]],
output_directory: Union[pathlib.Path, str],
save_midi: bool,
sonify_midi: bool,
save_model_outputs: bool,
save_notes: bool,
model_or_model_path: Union[Model, str, pathlib.Path],
onset_threshold: float = 0.5,
frame_threshold: float = 0.3,
minimum_note_length: float = 127.70,
minimum_frequency: Optional[float] = None,
maximum_frequency: Optional[float] = None,
multiple_pitch_bends: bool = False,
melodia_trick: bool = True,
debug_file: Optional[pathlib.Path] = None,
sonification_samplerate: int = 44100,
midi_tempo: float = 120,
) -> None:
"""Make a prediction and save the results to file.
Args:
audio_path_list: List of file paths for the audio to run inference on.
output_directory: Directory to output MIDI and all other outputs derived from the model to.
save_midi: True to save midi.
sonify_midi: Whether or not to render audio from the MIDI and output it to a file.
save_model_outputs: True to save contours, onsets and notes from the model prediction.
save_notes: True to save note events.
model_or_model_path: A loaded Model or path to a serialized model to load.
onset_threshold: Minimum energy required for an onset to be considered present.
frame_threshold: Minimum energy requirement for a frame to be considered present.
minimum_note_length: The minimum allowed note length in milliseconds.
minimum_freq: Minimum allowed output frequency, in Hz. If None, all frequencies are used.
maximum_freq: Maximum allowed output frequency, in Hz. If None, all frequencies are used.
multiple_pitch_bends: If True, allow overlapping notes in midi file to have pitch bends.
melodia_trick: Use the melodia post-processing step.
debug_file: An optional path to output debug data to. Useful for testing/verification.
sonification_samplerate: Sample rate for rendering audio from MIDI.
"""
for audio_path in audio_path_list:
print("")
try:
model_output, midi_data, note_events = predict(
pathlib.Path(audio_path),
model_or_model_path,
onset_threshold,
frame_threshold,
minimum_note_length,
minimum_frequency,
maximum_frequency,
multiple_pitch_bends,
melodia_trick,
debug_file,
midi_tempo,
)
if save_model_outputs:
model_output_path = build_output_path(audio_path, output_directory, OutputExtensions.MODEL_OUTPUT_NPZ)
try:
np.savez(model_output_path, basic_pitch_model_output=model_output)
file_saved_confirmation(OutputExtensions.MODEL_OUTPUT_NPZ.name, model_output_path)
except Exception as e:
failed_to_save(OutputExtensions.MODEL_OUTPUT_NPZ.name, model_output_path)
raise e
if save_midi:
try:
midi_path = build_output_path(audio_path, output_directory, OutputExtensions.MIDI)
except IOError as e:
raise e
try:
midi_data.write(str(midi_path))
file_saved_confirmation(OutputExtensions.MIDI.name, midi_path)
except Exception as e:
failed_to_save(OutputExtensions.MIDI.name, midi_path)
raise e
if sonify_midi:
midi_sonify_path = build_output_path(audio_path, output_directory, OutputExtensions.MIDI_SONIFICATION)
try:
infer.sonify_midi(midi_data, midi_sonify_path, sr=sonification_samplerate)
file_saved_confirmation(OutputExtensions.MIDI_SONIFICATION.name, midi_sonify_path)
except Exception as e:
failed_to_save(OutputExtensions.MIDI_SONIFICATION.name, midi_sonify_path)
raise e
if save_notes:
note_events_path = build_output_path(audio_path, output_directory, OutputExtensions.NOTE_EVENTS)
try:
save_note_events(note_events, note_events_path)
file_saved_confirmation(OutputExtensions.NOTE_EVENTS.name, note_events_path)
except Exception as e:
failed_to_save(OutputExtensions.NOTE_EVENTS.name, note_events_path)
raise e
except Exception as e:
raise e