
SICP, JavaScript Adaptation, Source §1, 2018 1

National University of Singapore

School of Computing

Martin Henz

Source §1, 2018

May 18, 2018

The language Source is the official language of the textbook Structure and Interpretation of Com-

puter Programs, JavaScript Adaptation. You have never heard of Source? No worries! It was in-
vented just for the purpose of the book. Source is a sublanguage of ECMAScript 2016 (7th Edition)
and defined in the documents titled “Source §x”, where x refers to the respective textbook chap-
ter. For example, Source §3 is suitable for textbook Chapter 3 and the preceeding chapters.

Programs

A Source program is a statement, defined using Backus-Naur Form1 as follows:

statement ::= const name = expression ; constant declaration

| function name (parameters)

{ statement } function declaration

| return expression ; return statement

| if-statement conditional statement

| statement statement statement sequence

| expression ; expression statement

parameters ::= ǫ | name (, name) . . . function parameters

if-statement ::= if (expression) { statement }

else ({ statement } | if-statement) conditional statement

expression ::= number primitive number expression

| true | false primitive boolean expression

| string primitive string expression

| name name expression

| expression binary-operator expression binary operator combination

| unary-operator expression unary operator combination

| expression (expressions) (compound) function application

| (name | (parameters)) => expression function definition expression

| expression ? expression : expression conditional expression

| (expression) parenthesised expression

binary-operator ::= + | - | * | / | % | === | !==

| > | < | >= | <= | && | ||

unary-operator ::= ! | -

expressions ::= ǫ | expression (, expression) . . . argument expressions

return statements

• return statements are only allowed in bodies of functions.

• There cannot be any newline character between return and expression ;.

1 We adopt Henry Ledgard’s BNF variant that he described in A human engineered variant of BNF, ACM SIGPLAN
Notices, Volume 15 Issue 10, October 1980, Pages 57-62. In our grammars, we use bold font for keywords, italics for
syntactic variables, ǫ for nothing, x | y for x or y, and x . . . for zero or more repetitions of x.

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

SICP, JavaScript Adaptation, Source §1, 2018 2

Names

Names2 start with _, $ or a letter3 and contain only _, $, letters or digits4. Reserved words5 such
as keywords are not allowed as names.
Valid names are x, _45, $$ and π, but always keep in mind that programming is communicating,
and therefore the familiarity of the audience with the characters used in names is an important
aspect of program readability.
The following names can be used, in addition to names that are declared using const, function
and =>:

• math_name, where name is any name specified in the JavaScript Math library, see
ECMAScript Specification, Section 20.2. Examples:

– math_PI: Refers to the mathematical constant π,

– math_sqrt(n): Returns the square root of the number n.

• runtime(): Returns number of milliseconds elapsed since January 1, 1970 00:00:00 UTC

• display(a): Displays any value a in the console

• error(a): Displays any value a in the console with error flag

• prompt(s): Pops up a window that displays the string s, provides an input line for the user
to enter a text and an “OK” button. The call of prompt suspends execution of the program
until the “OK” button is pressed, at which point it returns the entered text as a string.

• parse_int(s, i): interprets the string s as an integer, using the positive integer i as
radix, and returns the respective value, see ECMAScript Specification, Section 18.2.5.

• undefined, NaN, Infinity: Refer to JavaScript’s undefined, NaN (“Not a Number”) and
Infinity values, respectively.

Numbers

We use decimal notation for numbers, with an optional decimal dot. “Scientific notation” (multi-
plying the number with a power of 10) is indicated with the letter e. Examples for numbers are
5432, -5432.109, and -43.21e-45.

Strings

Strings are of the form "double-quote-characters", where double-quote-characters is a possibly
empty sequence of characters without the character ", and of the form ’single-quote-characters’,
where single-quote-characters is a possibly empty sequence of characters without the character
’,

Typing

Expressions evaluate to numbers, boolean values, strings or function values.
Only function values can be applied using the syntax:

expression ::= name(expressions)

2 In ECMAScript 2016 (7th Edition), these names are called identifiers.
3 By letter we mean Unicode letters (L) or letter numbers (NI).
4 By digit we mean characters in the Unicode categories Nd (including the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9),

Mn, Mc and Pc.
5 By Reserved word we mean any of: break, case, catch, continue, debugger, default, delete, do, else, finally,

for, function, if, in, instanceof, new, return, switch, this, throw, try, typeof, var, void, while, with, class,
const, enum, export, extends, import, super, implements, interface, let, package, private, protected, public,
static, yield, null, true, false.

https://www.ecma-international.org/ecma-262/8.0/index.html#sec-math-object
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-parseint-string-radix
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://unicode.org/reports/tr44/
http://unicode.org/reports/tr44/

SICP, JavaScript Adaptation, Source §1, 2018 3

The following table specifies what arguments Source’s operators take and what results they
return.
operator argument 1 argument 2 result

+ number number number
+ string any string
+ any string string
- number number number

* number number number
/ number number number
% number number number

=== number number bool
=== bool bool bool
=== string string bool
=== function function bool
!== number number bool
!== bool bool bool
!== string string bool
!== function function bool
> number number bool
> string string bool
< number number bool
< string string bool
>= number number bool
>= string string bool
<= number number bool
<= string string bool
&& bool bool bool
|| bool bool bool
! bool bool
- number number

Preceding ?, Source only allows boolean expressions.

Comments

In Source, any sequence of characters between “/*” and the next “*/” is ignored.
After “//” any characters until the next newline character is ignored.

