forked from automl/TempoRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_tabular_experiments.py
633 lines (565 loc) · 28.9 KB
/
run_tabular_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import os
import pickle
from collections import defaultdict
import numpy as np
from utils import experiments
from utils.neuralTS import NeuralTSDiag
from grid_envs import GridCore
def make_epsilon_greedy_policy(Q: defaultdict, epsilon: float, nA: int) -> callable:
"""
Creates an epsilon-greedy policy based on a given Q-function and epsilon.
I.e. create weight vector from which actions get sampled.
:param Q: tabular state-action lookup function
:param epsilon: exploration factor
:param nA: size of action space to consider for this policy
"""
def policy_fn(observation):
policy = np.ones(nA) * epsilon / nA
best_action = np.random.choice(np.flatnonzero( # random choice for tie-breaking only
Q[observation] == Q[observation].max()
))
policy[best_action] += (1 - epsilon)
return policy
return policy_fn
def get_decay_schedule(start_val: float, decay_start: int, num_steps: int, type_: str):
"""
Create epsilon decay schedule
:param start_val: Start decay from this value (i.e. 1)
:param decay_start: number of iterations to start epsilon decay after
:param num_steps: Total number of steps to decay over
:param type_: Which strategy to use. Implemented choices: 'const', 'log', 'linear'
:return:
"""
if type_ == 'const':
return np.array([start_val for _ in range(num_steps)])
elif type_ == 'log':
return np.hstack([[start_val for _ in range(decay_start)],
np.logspace(np.log10(start_val), np.log10(0.000001), (num_steps - decay_start))])
elif type_ == 'linear':
return np.hstack([[start_val for _ in range(decay_start)],
np.linspace(start_val, 0, (num_steps - decay_start), endpoint=True)])
else:
raise NotImplementedError
def td_update(q: defaultdict, state: int, action: int, reward: float, next_state: int, gamma: float, alpha: float):
""" Simple TD update rule """
# TD update
best_next_action = np.random.choice(np.flatnonzero(q[next_state] == q[next_state].max())) # greedy best next
td_target = reward + gamma * q[next_state][best_next_action]
td_delta = td_target - q[state][action]
return q[state][action] + alpha * td_delta
def q_learning(
environment: GridCore,
num_episodes: int,
discount_factor: float = 1.0,
alpha: float = 0.5,
epsilon: float = 0.1,
epsilon_decay: str = 'const',
decay_starts: int = 0,
eval_every: int = 10,
render_eval: bool = True):
"""
Vanilla tabular Q-learning algorithm
:param environment: which environment to use
:param num_episodes: number of episodes to train
:param discount_factor: discount factor used in TD updates
:param alpha: learning rate used in TD updates
:param epsilon: exploration fraction (either constant or starting value for schedule)
:param epsilon_decay: determine type of exploration (constant, linear/exponential decay schedule)
:param decay_starts: After how many episodes epsilon decay starts
:param eval_every: Number of episodes between evaluations
:param render_eval: Flag to activate/deactivate rendering of evaluation runs
:return: training and evaluation statistics (i.e. rewards and episode lengths)
"""
assert 0 <= discount_factor <= 1, 'Lambda should be in [0, 1]'
assert 0 <= epsilon <= 1, 'epsilon has to be in [0, 1]'
assert alpha > 0, 'Learning rate has to be positive'
# The action-value function.
# Nested dict that maps state -> (action -> action-value).
Q = defaultdict(lambda: np.zeros(environment.action_space.n))
# Keeps track of episode lengths and rewards
rewards = []
lens = []
test_rewards = []
test_lens = []
train_steps_list = []
test_steps_list = []
epsilon_schedule = get_decay_schedule(epsilon, decay_starts, num_episodes, epsilon_decay)
for i_episode in range(num_episodes + 1):
# print('#' * 100)
epsilon = epsilon_schedule[min(i_episode, num_episodes - 1)]
# The policy we're following
policy = make_epsilon_greedy_policy(Q, epsilon, environment.action_space.n)
policy_state = environment.reset()
episode_length, cummulative_reward = 0, 0
while True: # roll out episode
policy_action = np.random.choice(list(range(environment.action_space.n)), p=policy(policy_state))
s_, policy_reward, policy_done, _ = environment.step(policy_action)
cummulative_reward += policy_reward
episode_length += 1
Q[policy_state][policy_action] = td_update(Q, policy_state, policy_action,
policy_reward, s_, discount_factor, alpha)
if policy_done:
break
policy_state = s_
rewards.append(cummulative_reward)
lens.append(episode_length)
train_steps_list.append(environment.total_steps)
# evaluation with greedy policy
test_steps = 0
if i_episode % eval_every == 0:
policy_state = environment.reset()
episode_length, cummulative_reward = 0, 0
if render_eval:
environment.render()
while True: # roll out episode
policy_action = np.random.choice(np.flatnonzero(Q[policy_state] == Q[policy_state].max()))
environment.total_steps -= 1 # don't count evaluation steps
s_, policy_reward, policy_done, _ = environment.step(policy_action)
test_steps += 1
if render_eval:
environment.render()
s_ = s_
cummulative_reward += policy_reward
episode_length += 1
if policy_done:
break
policy_state = s_
test_rewards.append(cummulative_reward)
test_lens.append(episode_length)
test_steps_list.append(test_steps)
print('Done %4d/%4d episodes' % (i_episode, num_episodes))
return (rewards, lens), (test_rewards, test_lens), (train_steps_list, test_steps_list), Q
class SkipTransition:
"""
Simple helper class to keep track of all transitions observed when skipping through an MDP
"""
def __init__(self, skips, df):
self.state_mat = np.full((skips, skips), -1, dtype=int) # might need to change type for other envs
self.reward_mat = np.full((skips, skips), np.nan, dtype=float)
self.idx = 0
self.df = df
def add(self, reward, next_state):
"""
Add reward and next_state to triangular matrix
:param reward: received reward
:param next_state: state reached
"""
self.idx += 1
for i in range(self.idx):
self.state_mat[self.idx - i - 1, i] = next_state
# Automatically discount rewards when adding to corresponding skip
self.reward_mat[self.idx - i - 1, i] = reward * self.df ** i + np.nansum(self.reward_mat[self.idx - i - 1])
class ContextBuffer:
"""
Simple helper class to keep track of all transitions observed when skipping through an MDP
"""
def __init__(self, extension, df, Q, action_dim):
self.context_mat = np.full((extension, 4), -1, dtype=int) # might need to change type for other envs
self.reward_mat = np.full((extension, 1), np.nan, dtype=float)
self.idx = 0
self.df = df
self.Q = Q
self.action_dim = action_dim
def add(self, state, action, reward, next_state):
"""
Add reward and next_state to triangular matrix
:param reward: received reward
:param next_state: state reached
"""
# create context actually visited
self.context_mat[self.idx, :] = np.concatenate((state, action, self.idx), axis=None)
# Automatically discount rewards when adding to corresponding skip
self.reward_mat[self.idx, :] = reward + np.nansum(self.reward_mat[self.idx - 1]) + max([self.Q[next_state][j] for j in range(self.action_dim)])
self.idx += 1
def temporl_q_learning(
environment: GridCore,
num_episodes: int,
discount_factor: float = 1.0,
alpha: float = 0.5,
epsilon: float = 0.1,
epsilon_decay: str = 'const',
decay_starts: int = 0,
decay_stops: int = None,
eval_every: int = 10,
render_eval: bool = True,
max_skip: int = 7):
"""
Implementation of tabular TempoRL
:param environment: which environment to use
:param num_episodes: number of episodes to train
:param discount_factor: discount factor used in TD updates
:param alpha: learning rate used in TD updates
:param epsilon: exploration fraction (either constant or starting value for schedule)
:param epsilon_decay: determine type of exploration (constant, linear/exponential decay schedule)
:param decay_starts: After how many episodes epsilon decay starts
:param decay_stops: Episode after which to stop epsilon decay
:param eval_every: Number of episodes between evaluations
:param render_eval: Flag to activate/deactivate rendering of evaluation runs
:param max_skip: Maximum skip size to use.
:return: training and evaluation statistics (i.e. rewards and episode lengths)
"""
temporal_actions = max_skip
action_Q = defaultdict(lambda: np.zeros(environment.action_space.n))
temporal_Q = defaultdict(lambda: np.zeros(temporal_actions))
if not decay_stops:
decay_stops = num_episodes
epsilon_schedule_action = get_decay_schedule(epsilon, decay_starts, decay_stops, epsilon_decay)
epsilon_schedule_temporal = get_decay_schedule(epsilon, decay_starts, decay_stops, epsilon_decay)
rewards = []
lens = []
test_rewards = []
test_lens = []
train_steps_list = []
test_steps_list = []
for i_episode in range(num_episodes + 1):
# setup exploration policy for this episode
epsilon_action = epsilon_schedule_action[min(i_episode, num_episodes - 1)]
epsilon_temporal = epsilon_schedule_temporal[min(i_episode, num_episodes - 1)]
action_policy = make_epsilon_greedy_policy(action_Q, epsilon_action, environment.action_space.n)
temporal_policy = make_epsilon_greedy_policy(temporal_Q, epsilon_temporal, temporal_actions)
episode_r = 0
state = environment.reset() # type: list
action_pol_len = 0
while True: # roll out episode
action = np.random.choice(list(range(environment.action_space.n)), p=action_policy(state))
temporal_state = (state, action)
action_pol_len += 1
temporal_action = np.random.choice(list(range(temporal_actions)), p=temporal_policy(temporal_state))
s_ = None
done = False
tmp_state = state
skip_transition = SkipTransition(temporal_action + 1, discount_factor)
reward = 0
for tmp_temporal_action in range(temporal_action + 1):
if not done:
# only perform action if we are not done. If we are not done "skipping" though we have to
# still add reward and same state to the skip_transition.
s_, reward, done, _ = environment.step(action)
skip_transition.add(reward, tmp_state)
# 1-step update of action Q (like in vanilla Q)
action_Q[tmp_state][action] = td_update(action_Q, tmp_state, action,
reward, s_, discount_factor, alpha)
count = 0
# For all sofar observed transitions compute all forward skip updates
for skip_num in range(skip_transition.idx):
skip = skip_transition.state_mat[skip_num]
rew = skip_transition.reward_mat[skip_num]
skip_start_state = (skip[0], action)
# Temporal TD update
best_next_action = np.random.choice(
np.flatnonzero(action_Q[s_] == action_Q[s_].max())) # greedy best next
td_target = rew[skip_transition.idx - 1 - count] + (
discount_factor ** (skip_transition.idx - 1)) * action_Q[s_][best_next_action]
td_delta = td_target - temporal_Q[skip_start_state][skip_transition.idx - count - 1]
temporal_Q[skip_start_state][skip_transition.idx - count - 1] += alpha * td_delta
count += 1
tmp_state = s_
state = s_
if done:
break
rewards.append(episode_r)
lens.append(action_pol_len)
train_steps_list.append(environment.total_steps)
# ---------------------------------------------- EVALUATION -------------------------------------------------
# ---------------------------------------------- EVALUATION -------------------------------------------------
test_steps = 0
if i_episode % eval_every == 0:
episode_r = 0
state = environment.reset() # type: list
if render_eval:
environment.render(in_control=True)
action_pol_len = 0
while True: # roll out episode
action = np.random.choice(np.flatnonzero(action_Q[state] == action_Q[state].max()))
temporal_state = (state, action)
action_pol_len += 1
# Examples of different action selection schemes when greedily following a policy
# temporal_action = np.random.choice(
# np.flatnonzero(temporal_Q[temporal_state] == temporal_Q[temporal_state].max()))
temporal_action = np.max( # if there are ties use the larger action
np.flatnonzero(temporal_Q[temporal_state] == temporal_Q[temporal_state].max()))
# temporal_action = np.min( # if there are ties use the smaller action
# np.flatnonzero(temporal_Q[temporal_state] == temporal_Q[temporal_state].max()))
for i in range(temporal_action + 1):
environment.total_steps -= 1 # don't count evaluation steps
s_, reward, done, _ = environment.step(action)
test_steps += 1
if render_eval:
environment.render(in_control=False)
episode_r += reward
if done:
break
if render_eval:
environment.render(in_control=True)
state = s_
if done:
break
test_rewards.append(episode_r)
test_lens.append(action_pol_len)
test_steps_list.append(test_steps)
print('Done %4d/%4d episodes' % (i_episode, num_episodes))
return (rewards, lens), (test_rewards, test_lens), (train_steps_list, test_steps_list), (action_Q, temporal_Q)
def bandit_tee_q_learning(
environment: GridCore,
num_episodes: int,
discount_factor: float = 1.0,
alpha: float = 0.5,
epsilon: float = 0.1,
epsilon_decay: str = 'const',
decay_starts: int = 0,
decay_stops: int = None,
eval_every: int = 10,
render_eval: bool = True,
max_ext: int = 7):
"""
Implementation of tabular TempoRL
:param environment: which environment to use
:param num_episodes: number of episodes to train
:param discount_factor: discount factor used in TD updates
:param alpha: learning rate used in TD updates
:param epsilon: exploration fraction (either constant or starting value for schedule)
:param epsilon_decay: determine type of exploration (constant, linear/exponential decay schedule)
:param decay_starts: After how many episodes epsilon decay starts
:param decay_stops: Episode after which to stop epsilon decay
:param eval_every: Number of episodes between evaluations
:param render_eval: Flag to activate/deactivate rendering of evaluation runs
:param max_ext: Maximum extension size to use.
:return: training and evaluation statistics (i.e. rewards and episode lengths)
"""
temporal_actions = max_ext
action_Q = defaultdict(lambda: np.zeros(environment.action_space.n))
if not decay_stops:
decay_stops = num_episodes
epsilon_schedule_action = get_decay_schedule(epsilon, decay_starts, decay_stops, epsilon_decay)
rewards = []
lens = []
test_rewards = []
test_lens = []
train_steps_list = []
test_steps_list = []
# TODO Bandit policy
context_dimension = 1 + 2 + 1 #context dim = |A|+|S|+|N|
style = 'ts'
bandit_ed = NeuralTSDiag(context_dimension, 1, 1, 128, style)
for i_episode in range(num_episodes + 1):
# setup exploration policy for this episode
epsilon_action = epsilon_schedule_action[min(i_episode, num_episodes - 1)]
action_policy = make_epsilon_greedy_policy(action_Q, epsilon_action, environment.action_space.n)
episode_r = 0
state = environment.reset() # type: list
action_pol_len = 0
s_ = None
done = False
while True: # roll out episode
if done:
break
action = np.random.choice(list(range(environment.action_space.n)), p=action_policy(state))
action_pol_len += 1
# create context (state+action+extension)
state_pos = np.asarray(np.unravel_index(state, environment.shape))
context = np.concatenate((state_pos, [action]))
context = np.stack([context.copy() for i in range(max_ext)])
context = np.c_[context, np.array([i for i in range(max_ext)])]
# pull extension length
extension, _, _, _ = bandit_ed.select(context)
context_buffer = ContextBuffer(extension + 1, discount_factor, action_Q, environment.action_space.n)
reward = 0
for ext in range(extension + 1):
if not done:
# only perform action if we are not done. If we are not done "skipping" though we have to
# still add reward and same state to the skip_transition.
s_, reward, done, _ = environment.step(action)
context_buffer.add(np.unravel_index(state, environment.shape), action, (discount_factor**ext) * reward, s_)
# 1-step update of action Q (like in vanilla Q)
action_Q[state][action] = td_update(action_Q, state, action,
reward, s_, discount_factor, alpha)
state = s_
print(f"s: {state}, a: {action}, e: {ext} ,r: {reward}")
# update Bandit after all extension experience has been collected
bandit_ed.train(context_buffer.context_mat, context_buffer.reward_mat)
rewards.append(episode_r)
lens.append(action_pol_len)
train_steps_list.append(environment.total_steps)
# ---------------------------------------------- EVALUATION -------------------------------------------------
# ---------------------------------------------- EVALUATION -------------------------------------------------
test_steps = 0
if i_episode % eval_every == 0:
episode_r = 0
state = environment.reset() # type: list
if render_eval:
environment.render(in_control=True)
action_pol_len = 0
while True: # roll out episode
action = np.random.choice(np.flatnonzero(action_Q[state] == action_Q[state].max()))
action_pol_len += 1
# create context (state+action+extension)
state_pos = np.asarray(np.unravel_index(state, environment.shape))
context = np.concatenate((state_pos, [action]))
context = np.stack([context.copy() for i in range(max_ext)])
context = np.c_[context, np.array([i for i in range(max_ext)])]
# pull extension length
extension, _, _, _ = bandit_ed.select(context)
for i in range(extension + 1):
environment.total_steps -= 1 # don't count evaluation steps
s_, reward, done, _ = environment.step(action)
test_steps += 1
if render_eval:
environment.render(in_control=False)
episode_r += reward
if done:
break
if render_eval:
environment.render(in_control=True)
state = s_
if done:
break
test_rewards.append(episode_r)
test_lens.append(action_pol_len)
test_steps_list.append(test_steps)
print('Done %4d/%4d episodes' % (i_episode, num_episodes))
return (rewards, lens), (test_rewards, test_lens), (train_steps_list, test_steps_list), (action_Q, temporal_Q)
if __name__ == '__main__':
import argparse
outdir_suffix_dict = {'none': '', 'empty': '', 'time': '%Y%m%dT%H%M%S.%f',
'seed': '{:d}', 'params': '{:d}_{:d}_{:d}',
'paramsseed': '{:d}_{:d}_{:d}_{:d}'}
parser = argparse.ArgumentParser('Skip-MDP Tabular-Q')
parser.add_argument('--episodes', '-e',
default=10_000,
type=int,
help='Number of training episodes')
parser.add_argument('--out-dir',
default='/home/seungjoonpark/TempoRL/experiments/tabular_results',
type=str,
help='Directory to save results. Defaults to tmp dir.')
parser.add_argument('--out-dir-suffix',
default='paramsseed',
type=str,
choices=list(outdir_suffix_dict.keys()),
help='Created suffix of directory to save results.')
parser.add_argument('--seed', '-s',
default=12345,
type=int,
help='Seed')
parser.add_argument('--env-max-steps',
default=100,
type=int,
help='Maximal steps in environment before termination.',
dest='env_ms')
parser.add_argument('--agent-eps-decay',
default='linear',
choices={'linear', 'log', 'const'},
help='Epsilon decay schedule',
dest='agent_eps_d')
parser.add_argument('--agent-eps',
default=1.0,
type=float,
help='Epsilon value. Used as start value when decay linear or log. Otherwise constant value.',
dest='agent_eps')
parser.add_argument('--agent',
default='sq',
choices={'sq', 'q', 'bandit'},
type=str.lower,
help='Agent type to train')
parser.add_argument('--env',
default='lava',
choices={'lava', 'lava2',
'lava_perc', 'lava2_perc',
'lava_ng', 'lava2_ng',
'lava3', 'lava3_perc', 'lava3_ng'},
type=str.lower,
help='Enironment to use')
parser.add_argument('--eval-eps',
default=100,
type=int,
help='After how many episodes to evaluate')
parser.add_argument('--stochasticity',
default=0,
type=float,
help='probability of the selected action failing and instead executing any of the remaining 3')
parser.add_argument('--no-render',
action='store_true',
help='Deactivate rendering of environment evaluation')
parser.add_argument('--max-skips',
type=int,
default=7,
help='Max skip size for tempoRL')
parser.add_argument('--store-result',
type=int,
default=1,
help='whether to store result')
# setup output dir
args = parser.parse_args()
outdir_suffix_dict['seed'] = outdir_suffix_dict['seed'].format(args.seed)
outdir_suffix_dict['params'] = outdir_suffix_dict['params'].format(
args.episodes, args.max_skips, args.env_ms)
outdir_suffix_dict['paramsseed'] = outdir_suffix_dict['paramsseed'].format(
args.episodes, args.max_skips, args.env_ms, args.seed)
if not args.no_render:
# Clear screen in ANSI terminal
print('\033c')
print('\x1bc')
if args.store_result:
out_dir = experiments.prepare_output_dir(args, user_specified_dir=args.out_dir,
time_format=outdir_suffix_dict[args.out_dir_suffix])
np.random.seed(args.seed) # seed nump
d = None
if args.env.startswith('lava'):
import gym
from grid_envs import Bridge6x10Env, Pit6x10Env, ZigZag6x10, ZigZag6x10H
perc = args.env.endswith('perc')
ng = args.env.endswith('ng')
if args.env.startswith('lava2'):
d = Bridge6x10Env(max_steps=args.env_ms, percentage_reward=perc, no_goal_rew=ng,
act_fail_prob=args.stochasticity, numpy_state=False)
elif args.env.startswith('lava3'):
d = ZigZag6x10(max_steps=args.env_ms, percentage_reward=perc, no_goal_rew=ng, goal=(5, 9),
act_fail_prob=args.stochasticity, numpy_state=False)
elif args.env.startswith('lava4'):
d = ZigZag6x10H(max_steps=args.env_ms, percentage_reward=perc, no_goal_rew=ng, goal=(5, 9),
act_fail_prob=args.stochasticity, numpy_state=False)
else:
d = Pit6x10Env(max_steps=args.env_ms, percentage_reward=perc, no_goal_rew=ng,
act_fail_prob=args.stochasticity, numpy_state=False)
# setup agent
if args.agent == 'sq':
train_data, test_data, num_steps, (action_Q, t_Q) = temporl_q_learning(d, args.episodes,
epsilon_decay=args.agent_eps_d,
epsilon=args.agent_eps,
discount_factor=.99, alpha=.5,
eval_every=args.eval_eps,
render_eval=not args.no_render,
max_skip=args.max_skips)
elif args.agent == 'q':
train_data, test_data, num_steps, Q = q_learning(d, args.episodes,
epsilon_decay=args.agent_eps_d,
epsilon=args.agent_eps,
discount_factor=.99,
alpha=.5, eval_every=args.eval_eps,
render_eval=not args.no_render)
elif args.agent == 'bandit':
train_data, test_data, num_steps, Q = bandit_tee_q_learning(d, args.episodes,
epsilon_decay=args.agent_eps_d,
epsilon=args.agent_eps,
discount_factor=.99, alpha=.5,
eval_every=args.eval_eps,
render_eval=not args.no_render,
max_ext=args.max_skips)
else:
raise NotImplemented
# TODO save resulting Q-function for easy reuse
if args.store_result:
with open(os.path.join(out_dir, 'train_data.pkl'), 'wb') as outfh:
pickle.dump(train_data, outfh)
with open(os.path.join(out_dir, 'test_data.pkl'), 'wb') as outfh:
pickle.dump(test_data, outfh)
with open(os.path.join(out_dir, 'steps_per_episode.pkl'), 'wb') as outfh:
pickle.dump(num_steps, outfh)
if args.agent == 'q':
with open(os.path.join(out_dir, 'Q.pkl'), 'wb') as outfh:
pickle.dump(dict(Q), outfh)
elif args.agent == 'sq':
with open(os.path.join(out_dir, 'Q.pkl'), 'wb') as outfh:
pickle.dump(dict(action_Q), outfh)
with open(os.path.join(out_dir, 'J.pkl'), 'wb') as outfh:
pickle.dump(dict(t_Q), outfh)