-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharea_chair.py
491 lines (407 loc) · 19.8 KB
/
area_chair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import time
import json
import copy
import os
import requests as rq
import random
import os
import gradio as gr
import argparse
import colorama
from colorama import Fore
from transformers import AutoTokenizer
from rich import print
from termcolor import colored
from concurrent.futures import ThreadPoolExecutor
from utils import *
colorama.init()
chapters = {
"Abstract": ["abstract"],
"Introduction": ["introduction", "intro"],
"Related Work": [
"related work", "literature review", "background",
"prior art", "state of the art"
],
"Methodology": [
"methodology", "methods", "approach",
"algorithm", "framework", "model"
],
"Experiments": [
"experiments", "experimental setup", "experimentation",
"experimental study", "evaluation", "validation"
],
"Results": [
"results", "findings", "outcomes",
"data analysis"
],
"Discussion": [
"discussion", "analysis", "discussion and analysis",
"interpretation", "insights"
],
"Conclusion": [
"conclusion", "concluding remarks", "summary",
"final thoughts", "wrap-up"
],
"Future Work": [
"future work", "directions for future research",
"prospects"
],
"Acknowledgments": [
"acknowledgments", "acknowledgements", "thanks"
],
"References": [
"references", "bibliography", "works cited"
],
"Appendices": [
"appendices", "appendix", "supplementary material",
"additional information"
]
}
sections = ['ABSTRACT', 'INTRODUCTION', 'EXPERIMENTS', 'RESULTS', 'CONCLUSION']
max_length = {
"ABSTRACT": 1024,
"INTRODUCTION": 4096,
"EXPERIMENTS": 3072,
"RESULTS": 3072,
"CONCLUSION": 2048,
}
assessments = ['summaries', 'strengths', 'weaknesses', 'questions']
tokenizer_path = "vicuna"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
def add_inference_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
group = parser.add_argument_group()
group.add_argument("--re-path", type=str, default='vicuna-7b-v1.5-re-awq')
group.add_argument("--ac-path", type=str, default='vicuna-7b-v1.5-ac-awq')
group.add_argument("--re-port", type=str, default='39174')
group.add_argument("--ac-port", type=str, default='8001')
group.add_argument("--server-port", type=str, default='10730')
return parser
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser = add_inference_args(parser)
args, unknown = parser.parse_known_args()
return args
def generate(input_str: str, model_path='vicuna-7b-v1.5-re-awq', port=39174, max_tokens=1024, temperature=0.7, index=0):
if isinstance(port, str) and ',' in port:
ports = port.split(',')
port = ports[index % len(ports)]
else:
ports = [port]
cnt = 0
text = ""
while text == "":
try:
query = {
"model": model_path,
"prompt": input_str,
"max_tokens": max_tokens,
"temperature": temperature
}
api_link = f"http://127.0.0.1:{port}/v1/completions"
output = rq.post(api_link, json.dumps(query), headers={'Content-Type': 'application/json'})
text: str = json.loads(output.text)["choices"][0]['text']
except:
print(f"Retry: {cnt}, {api_link}")
cnt += 1
index -= 1
port = ports[index % len(ports)]
print(f"Switch to backup port: {port}")
time.sleep(0.2)
if cnt > 10:
print("Failed too many times.")
break
return text.strip(' ')
def build_input(elements):
global tokenizer
start_message = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:"
input_str = start_message
input_ids = tokenizer.encode(start_message, add_special_tokens=True)
loss_mask = [0] * len(input_ids)
last_turn = 0
for element in elements:
io_mark, string = element
if io_mark != last_turn:
if io_mark == 1:
assistant_token = tokenizer.encode("ASSISTANT:", add_special_tokens=False)
input_ids += assistant_token
input_str += "ASSISTANT:"
loss_mask += [0] * len(assistant_token)
# string = "ASSISTANT: " + string
elif io_mark == 0:
string = "USER: " + string
else:
raise AssertionError(f"Unkown io_mark {io_mark}")
tokens = tokenizer.encode(string, add_special_tokens=False)
if io_mark == 0:
loss_mask += [0] * len(tokens)
elif io_mark == 1:
string += tokenizer.eos_token
tokens.append(tokenizer.eos_token_id)
loss_mask += [1] * len(tokens)
input_str += string
input_ids += tokens
last_turn = io_mark
assistant_token = tokenizer.encode("ASSISTANT:", add_special_tokens=False)
input_ids += assistant_token
input_str += "ASSISTANT:"
loss_mask += [0] * len(assistant_token)
print(Fore.CYAN)
return input_ids, loss_mask, input_str
def ends_with_punctuation(s):
punctuation = ".!?;,()" # 定义标点符号
if s and s[-1] in punctuation:
return True
else:
return False
def remove_duplicate(review: str) -> str:
if review.count('\n') < 2:
return review
points = [s.strip(' ') for s in review.split('\n')]
filtered_points = []
for point in points:
if point not in filtered_points or len(point) < 1:
filtered_points.append(point)
if len(points) > 8 and (not ends_with_punctuation(filtered_points[-1])) and ends_with_punctuation(filtered_points[-2]):
filtered_points = filtered_points[:-1]
filtered_review = '\n'.join(filtered_points)
if filtered_points.count('\n') < points.count('\n'):
print(Fore.GREEN)
print(f"{len(points)} -> {len(filtered_points)}")
print('================================')
print(f"{review}")
print('--------------------------------')
print(Fore.CYAN, end=None)
print(f"{filtered_review}")
print('================================')
print(Fore.CYAN)
return filtered_review
class Reviewer:
def __init__(self):
self.seeds = []
self.logs_dir = "logs"
def load_pdf(self, seed, title, keywords, file_name):
seed = seed if seed else random.randint(0, 65535)
self.seeds.append((seed, time.time()))
paper = ""
split_text = {}
if os.path.exists(file_name):
extracted_text = extract_chapter(file_name)
if len(extracted_text.split('\n')) > 2:
extracted_text = extracted_text.replace("I NTRODUCTION", "INTRODUCTION")
extracted_text = extracted_text.replace("C ONCLUSION", "CONCLUSION")
split_text: Dict = {}
for k, v in filter_iclr_pdf(extracted_text, chapters).items():
if k.upper() in sections:
tokens = tokenizer.encode(v, add_special_tokens=False)
if len(tokens) > max_length[k.upper()]:
cut_tokens = tokens[:max_length[k.upper()]]
split_text[k.upper()] = tokenizer.decode(cut_tokens, skip_special_tokens=False)
else:
split_text[k.upper()] = v
for section_name, content in split_text.items():
paper += f"{section_name}\n\n{content}\n\n"
try:
os.makedirs(self.logs_dir, exist_ok=True)
with open(os.path.join(self.logs_dir, 'paper.jsonl'), 'a', encoding='utf-8') as f:
f.write(
json.dumps(
{
'file': file_name,
'title': title,
'keywords': keywords,
'seed': seed
}
) + '\n'
)
except Exception as e:
print(e)
return seed, title, keywords, paper, split_text
def generate_notes(self, seed, title, keywords: List, split_text: Dict, index=0):
global args
Seed = random.randint(0, 65535)
Title = title
Keywords = keywords
Seed = seed
Title = title
Keywords = keywords
elements = [
(0, f"You are the No.{Seed} reviewer of openreivew. You are reviewing the paper titled {Title}. The keywords are {Keywords}. You will read this paper and write a review for it.\n\n")
]
note_dict = {}
assessment_dict = {}
for assessment in assessments:
assessment_dict[assessment] = []
for section in sections:
elements.append((0, f"Read the {section} of this paper, and write down your reading notes, such as summaries, questions, weaknesses, or strengths:\n\n"))
elements.append((0, split_text[section] + '\n\n'))
elements.append((0, f"Now write down your note for the {section} of this paper, such as summaries, questions, weaknesses, or strengths:\n\n"))
input_ids, _, input_str = build_input(elements)
local_text = remove_duplicate(generate(input_str, model_path=args.re_path, port=args.re_port, index=index))
elements.append((1, local_text))
print(Fore.BLUE + local_text)
note_dict[section] = local_text
for assessment in assessments:
find_assessments = [
f"{assessment.upper()}:\n",
f"{assessment.upper()}\n",
f"{assessment.lower().capitalize()}:\n",
f"{assessment.lower().capitalize()}\n",
f"{assessment.lower()}:\n",
f"{assessment.lower()}\n",
]
if assessment == 'summaries':
find_assessments.extend([
f"{'summary'.upper()}:\n",
f"{'summary'.upper()}\n",
f"{'summary'.lower().capitalize()}:\n",
f"{'summary'.lower().capitalize()}\n",
f"{'summary'.lower()}:\n",
f"{'summary'.lower()}\n",
])
flag = False
for find_assessment in find_assessments:
if find_assessment in local_text:
flag = True
start_index = local_text.find(find_assessment) + len(find_assessment)
break
if flag:
end_index = local_text.find("\n\n", start_index)
splited_assessment = local_text[start_index : end_index]
if splited_assessment not in assessment_dict[assessment]:
assessment_dict[assessment].append(splited_assessment)
review_dict = {}
for assessment in assessments:
elements.append((0, f"You will read through your note about {assessment.upper()}, then write down the {assessment.upper()} for the paper. Your note about {assessment.upper()}:\n\n"))
used_splited_assessment = []
for splited_assessment in assessment_dict[assessment]:
if splited_assessment not in used_splited_assessment:
elements.append((0, f"{splited_assessment}\n"))
used_splited_assessment.append(splited_assessment)
elements.append((0, f"\n"))
elements.append((0, f"Your final {assessment.upper()}:\n\n"))
input_ids, _, input_str = build_input(elements)
local_text = remove_duplicate(generate(input_str, max_tokens=512, model_path=args.re_path, port=args.re_port, index=index))
elements.append((1, local_text))
print(Fore.BLUE + local_text)
review_dict[assessment.upper()] = local_text
elements.append((0, f"Now give this article a score from multiple dimensions:\n\n"))
for metric in ["soundness", "presentation", "contribution", "rating", "confidence"]:
elements.append((0, f"{metric}: "))
input_ids, _, input_str = build_input(elements)
local_text = generate(input_str, model_path=args.re_path, port=args.re_port, temperature=0.01, index=index)
elements.append((1, local_text))
print(Fore.BLUE + local_text)
review_dict[metric] = local_text
try:
os.makedirs(self.logs_dir, exist_ok=True)
with open(os.path.join(self.logs_dir, 'review.jsonl'), 'a', encoding='utf-8') as f:
f.write(
json.dumps(
{
'elements': elements,
'review_dict': review_dict
}
) + '\n'
)
except Exception as e:
print(e)
return review_dict
def generate_decision(self, title, keywords, split_text, review_dict_1, review_dict_2, review_dict_3, review_dict_4, index=0):
content_str_list = []
for i,comment in enumerate([review_dict_1, review_dict_2, review_dict_3, review_dict_4]):
content_str = f"Reviewer {i + 1}:\n"
for key, value in comment.items():
if key == "responses":
continue
content_str += f"{key.lower()}:\n{value}\n"
content_str_list.append(content_str)
final_str = "\n".join(content_str_list)
input_prompt = "Here are some reviews of the paper '" + str(title) + "'. And this is the abstract of the paper: " + str(split_text["ABSTRACT"]) + ".\n\nHere are some official reviews fellow researchers.\n " + final_str[:12000] + "\n\nNow, as an Area Chair, you should directly give the FINAL DECISION and overall explanation for that."
final_input_prompt = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {input_prompt} ASSISTANT:"
print(final_input_prompt)
result = generate(final_input_prompt, model_path=args.ac_path, port=args.ac_port, index=index)
print(result)
result_dict = {}
try:
decision, comments = result.strip().split('. ', maxsplit=1)
except:
decision = ''
comments = result.strip()
result_dict['Area Chair'] = decision
result_dict['Review'] = comments
return result_dict
description = '''
<h1>📝 Openreviewers: Multi Agent Academic Review Simulation System</h1>
<p style="font-size: 16px;letter-spacing: 1.5px;">|<a href="https://github.com/songxxzp/Openreviewers">GitHub</a>|<a href="https://github.com/songxxzp/Openreviewers">Dataset</a>|<a href="http://116.204.104.227:5173/">ArxivReviewers</a>|</p><p style="font-size: 16px;letter-spacing: 1.5px;">|<a href="http://116.204.104.227:10729/">OpenReviewer</a>|<a href="http://116.204.104.227:10730/">OpenReviewers</a>|</p>
<h2>📜 Rules</h2>
<ul>
<li style="font-size: 16px;">Please upload your paper in PDF format for review.</li>
<li style="font-size: 16px;">The title of your paper will be filled in automatically.</li>
<li style="font-size: 16px;">Our current PDF parser only supports specific types of papers. There may be parsing errors that could affect the final results.</li>
<li style="font-size: 16px;">The results are for reference only.</li>
</ul>
<h2>👇 Upload your paper now! </h2>
'''
def build_review_text(review_dict: Dict):
review_text = f'''Summaries:\n{review_dict['SUMMARIES']}\nStrengths:\n{review_dict['STRENGTHS']}\nWeaknesses:\n{review_dict['WEAKNESSES']}\nQuestions:\n{review_dict['QUESTIONS']}\n'''
return review_text
def generate_4_notes(seed, title, keywords: List, split_text: Dict, debug=False):
reviews = []
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for i in range(1 if debug else 4):
seed = random.randint(0, 65535)
futures.append(executor.submit(reviewer.generate_notes, seed, title, keywords, split_text, index=i))
for future in futures:
review = future.result()
reviews.append(review)
if debug:
review_dict_1 = review_dict_2 = review_dict_3 = review_dict_4 = copy.deepcopy(reviews[0])
else:
review_dict_1, review_dict_2, review_dict_3, review_dict_4 = copy.deepcopy(reviews)
for i in range(4):
for assessment in assessments:
reviews[i].pop(assessment.upper())
review_dict_10, review_dict_20, review_dict_30, review_dict_40 = reviews
return build_review_text(review_dict_1), review_dict_10, review_dict_1, build_review_text(review_dict_2), review_dict_20, review_dict_2, build_review_text(review_dict_3), review_dict_30, review_dict_3, build_review_text(review_dict_4), review_dict_40, review_dict_4
global args
args = get_args()
with gr.Blocks() as demo:
reviewer = Reviewer()
gr.HTML(description)
with gr.Row():
seed_output_box = gr.Textbox(label="Seed(Optional)", visible=False)
file_input_box = gr.File(label="pdf", value='pdfs/AttentionIsAllYouNeed.pdf')
with gr.Column():
title_box = gr.Textbox(label="Title", info='write the title of your paper', value="Attention Is All You Need")
keywords_box = gr.Textbox(label="Keywords(Optional)", value="Language Modeling, Deep Learning", info='write the keywords of your paper')
upload_pdf_btn = gr.Button("Upload")
section_output_box = gr.Textbox(label="Paper", visible=False)
split_text_box = gr.JSON(label="Splitted text", render=True, visible=False)
review_btn = gr.Button("Generate Reviews", visible=True)
with gr.Tab("Reviewer 1"):
with gr.Column():
review_box_10 = gr.JSON(label="reviewer 1", render=True)
review_box_1 = gr.Textbox(label="review", render=True, lines=24)
review_box1 = gr.JSON(label="reviewer 1", render=True, visible=False)
with gr.Tab("Reviewer 2"):
with gr.Column():
review_box_20 = gr.JSON(label="reviewer 2", render=True)
review_box_2 = gr.Textbox(label="review", render=True, lines=24)
review_box2 = gr.JSON(label="reviewer 2", render=True, visible=False)
with gr.Tab("Reviewer 3"):
with gr.Column():
review_box_30 = gr.JSON(label="reviewer 3", render=True)
review_box_3 = gr.Textbox(label="review", render=True, lines=24)
review_box3 = gr.JSON(label="reviewer 3", render=True, visible=False)
with gr.Tab("Reviewer 4"):
with gr.Column():
review_box_40 = gr.JSON(label="reviewer 4", render=True)
review_box_4 = gr.Textbox(label="review", render=True, lines=24)
review_box4 = gr.JSON(label="reviewer 4", render=True, visible=False)
ac_btn = gr.Button("Area Chair")
decison_box = gr.JSON(label="Area Chair", render=True)
upload_pdf_btn.click(fn=reviewer.load_pdf, inputs=[seed_output_box, title_box, keywords_box, file_input_box], outputs=[seed_output_box, title_box, keywords_box, section_output_box, split_text_box])
review_btn.click(fn=generate_4_notes, inputs=[seed_output_box, title_box, keywords_box, split_text_box], outputs=[review_box_1, review_box_10, review_box1, review_box_2, review_box_20, review_box2, review_box_3, review_box_30, review_box3, review_box_4, review_box_40, review_box4])
ac_btn.click(fn=reviewer.generate_decision, inputs=[title_box, keywords_box, split_text_box, review_box1, review_box2, review_box3, review_box4], outputs=[decison_box])
demo.launch(share=True, server_port=int(args.server_port), server_name='0.0.0.0')