-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTestConversationBufferWindowMemory.py
63 lines (52 loc) · 2.02 KB
/
TestConversationBufferWindowMemory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# https://python.langchain.com/en/latest/modules/memory/types/buffer_window.html
from langchain.prompts import (
ChatPromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate
)
from langchain.chains import ConversationChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferWindowMemory
from dotenv import load_dotenv
import os
def main():
load_dotenv()
# Load the OpenAI API key from the environment variable
if os.getenv("OPENAI_API_KEY") is None or os.getenv("OPENAI_API_KEY") == "":
print("OPENAI_API_KEY is not set")
exit(1)
else:
print("OPENAI_API_KEY is set")
system_message = "You are a helpful assistant."
user_input = input(f"System Message (default=`{system_message}`): ")
if len(user_input) > 0:
system_message = user_input
print(f"System Message: {system_message}")
k = 2
try:
k = int(input(f"keep the last `k` interactions in memory (default k={k}): "))
print(f"k={k}")
except ValueError:
pass
prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template(system_message),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template("{input}")
])
llm = ChatOpenAI(temperature=0)
# memory = ConversationBufferMemory(return_messages=True)
memory = ConversationBufferWindowMemory( k=k, return_messages=True)
memory.save_context({"Human": "hi"}, {"AI": "whats up"})
conversation = ConversationChain(
memory=memory, prompt=prompt, llm=llm, verbose=True
)
while True:
user_input = input("> ")
response = conversation.predict(input=user_input)
# messages.append(HumanMessage(content=user_input))
# assistant_response = chat(messages)
# messages.append(AIMessage(content=assistant_response.content))
print(f"Assistant: {response}\n")
if __name__ == '__main__':
main()