-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathhesschek.m
60 lines (56 loc) · 1.63 KB
/
hesschek.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function h = hesschek(net, x, t)
%HESSCHEK Use central differences to confirm correct evaluation of Hessian matrix.
%
% Description
%
% HESSCHEK(NET, X, T) takes a network data structure NET, together with
% input and target data matrices X and T, and compares the evaluation
% of the Hessian matrix using the function NETHESS and using central
% differences with the function NETERR.
%
% The optional return value H is the Hessian computed using NETHESS.
%
% See also
% NETHESS, NETERR
%
% Copyright (c) Ian T Nabney (1996-2001)
w0 = netpak(net);
nwts = length(w0);
h = nethess(w0, net, x, t);
w = w0;
hcent = zeros(nwts, nwts);
h1 = 0.0; h2 = 0.0; h3 = 0.0; h4 = 0.0;
epsilon = 1.0e-4;
fprintf(1, 'Checking Hessian ...\n\n');
for k = 1:nwts;
for l = 1:nwts;
if(l == k)
w(k) = w0(k) + 2.0*epsilon;
h1 = neterr(w, net, x, t);
w(k) = w0(k) - 2.0*epsilon;
h2 = neterr(w, net, x, t);
w(k) = w0(k);
h3 = neterr(w, net, x, t);
hcent(k, k) = (h1 + h2 - 2.0*h3)/(4.0*epsilon^2);
else
w(k) = w0(k) + epsilon;
w(l) = w0(l) + epsilon;
h1 = neterr(w, net, x, t);
w(k) = w0(k) - epsilon;
w(l) = w0(l) - epsilon;
h2 = neterr(w, net, x, t);
w(k) = w0(k) + epsilon;
w(l) = w0(l) - epsilon;
h3 = neterr(w, net, x, t);
w(k) = w0(k) - epsilon;
w(l) = w0(l) + epsilon;
h4 = neterr(w, net, x, t);
hcent(k, l) = (h1 + h2 - h3 - h4)/(4.0*epsilon^2);
w(k) = w0(k);
w(l) = w0(l);
end
end
end
fprintf(1, ' analytical numerical delta\n\n');
temp = [h(:), hcent(:), (h(:) - hcent(:))];
fprintf(1, '%12.6f %12.6f %12.6f\n', temp');