-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgtminit.m
153 lines (132 loc) · 5.08 KB
/
gtminit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
function net = gtminit(net, options, data, samp_type, varargin)
%GTMINIT Initialise the weights and latent sample in a GTM.
%
% Description
% NET = GTMINIT(NET, OPTIONS, DATA, SAMPTYPE) takes a GTM NET and
% generates a sample of latent data points and sets the centres (and
% widths if appropriate) of NET.RBFNET.
%
% If the SAMPTYPE is 'REGULAR', then regular grids of latent data
% points and RBF centres are created. The dimension of the latent data
% space must be 1 or 2. For one-dimensional latent space, the
% LSAMPSIZE parameter gives the number of latent points and the
% RBFSAMPSIZE parameter gives the number of RBF centres. For a two-
% dimensional latent space, these parameters must be vectors of length
% 2 with the number of points in each of the x and y directions to
% create a rectangular grid. The widths of the RBF basis functions are
% set by a call to RBFSETFW passing OPTIONS(7) as the scaling
% parameter.
%
% If the SAMPTYPE is 'UNIFORM' or 'GAUSSIAN' then the latent data is
% found by sampling from a uniform or Gaussian distribution
% correspondingly. The RBF basis function parameters are set by a call
% to RBFSETBF with the DATA parameter as dataset and the OPTIONS
% vector.
%
% Finally, the output layer weights of the RBF are initialised by
% mapping the mean of the latent variable to the mean of the target
% variable, and the L-dimensional latent variale variance to the
% variance of the targets along the first L principal components.
%
% See also
% GTM, GTMEM, PCA, RBFSETBF, RBFSETFW
%
% Copyright (c) Ian T Nabney (1996-2001)
% Check for consistency
errstring = consist(net, 'gtm', data);
if ~isempty(errstring)
error(errstring);
end
% Check type of sample
stypes = {'regular', 'uniform', 'gaussian'};
if (strcmp(samp_type, stypes)) == 0
error('Undefined sample type.')
end
if net.dim_latent > size(data, 2)
error('Latent space dimension must not be greater than data dimension')
end
nlatent = net.gmmnet.ncentres;
nhidden = net.rbfnet.nhidden;
% Create latent data sample and set RBF centres
switch samp_type
case 'regular'
if nargin ~= 6
error('Regular type must specify latent and RBF shapes');
end
l_samp_size = varargin{1};
rbf_samp_size = varargin{2};
if round(l_samp_size) ~= l_samp_size
error('Latent sample specification must contain integers')
end
% Check existence and size of rbf specification
if any(size(rbf_samp_size) ~= [1 net.dim_latent]) | ...
prod(rbf_samp_size) ~= nhidden
error('Incorrect specification of RBF centres')
end
% Check dimension and type of latent data specification
if any(size(l_samp_size) ~= [1 net.dim_latent]) | ...
prod(l_samp_size) ~= nlatent
error('Incorrect dimension of latent sample spec.')
end
if net.dim_latent == 1
net.X = [-1:2/(l_samp_size-1):1]';
net.rbfnet.c = [-1:2/(rbf_samp_size-1):1]';
net.rbfnet = rbfsetfw(net.rbfnet, options(7));
elseif net.dim_latent == 2
net.X = gtm_rctg(l_samp_size);
net.rbfnet.c = gtm_rctg(rbf_samp_size);
net.rbfnet = rbfsetfw(net.rbfnet, options(7));
else
error('For regular sample, input dimension must be 1 or 2.')
end
case {'uniform', 'gaussian'}
if strcmp(samp_type, 'uniform')
net.X = 2 * (rand(nlatent, net.dim_latent) - 0.5);
else
% Sample from N(0, 0.25) distribution to ensure most latent
% data is inside square
net.X = randn(nlatent, net.dim_latent)/2;
end
net.rbfnet = rbfsetbf(net.rbfnet, options, net.X);
otherwise
% Shouldn't get here
error('Invalid sample type');
end
% Latent data sample and basis function parameters chosen.
% Now set output weights
[PCcoeff, PCvec] = pca(data);
% Scale PCs by eigenvalues
A = PCvec(:, 1:net.dim_latent)*diag(sqrt(PCcoeff(1:net.dim_latent)));
[temp, Phi] = rbffwd(net.rbfnet, net.X);
% Normalise X to ensure 1:1 mapping of variances and calculate weights
% as solution of Phi*W = normX*A'
normX = (net.X - ones(size(net.X))*diag(mean(net.X)))*diag(1./std(net.X));
net.rbfnet.w2 = Phi \ (normX*A');
% Bias is mean of target data
net.rbfnet.b2 = mean(data);
% Must also set initial value of variance
% Find average distance between nearest centres
% Ensure that distance of centre to itself is excluded by setting diagonal
% entries to realmax
net.gmmnet.centres = rbffwd(net.rbfnet, net.X);
d = dist2(net.gmmnet.centres, net.gmmnet.centres) + ...
diag(ones(net.gmmnet.ncentres, 1)*realmax);
sigma = mean(min(d))/2;
% Now set covariance to minimum of this and next largest eigenvalue
if net.dim_latent < size(data, 2)
sigma = min(sigma, PCcoeff(net.dim_latent+1));
end
net.gmmnet.covars = sigma*ones(1, net.gmmnet.ncentres);
% Sub-function to create the sample data in 2d
function sample = gtm_rctg(samp_size)
xDim = samp_size(1);
yDim = samp_size(2);
% Produce a grid with the right number of rows and columns
[X, Y] = meshgrid([0:1:(xDim-1)], [(yDim-1):-1:0]);
% Change grid representation
sample = [X(:), Y(:)];
% Shift grid to correct position and scale it
maxXY= max(sample);
sample(:,1) = 2*(sample(:,1) - maxXY(1)/2)./maxXY(1);
sample(:,2) = 2*(sample(:,2) - maxXY(2)/2)./maxXY(2);
return;