-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgbayes.m
56 lines (51 loc) · 1.52 KB
/
gbayes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function [g, gdata, gprior] = gbayes(net, gdata)
%GBAYES Evaluate gradient of Bayesian error function for network.
%
% Description
% G = GBAYES(NET, GDATA) takes a network data structure NET together
% the data contribution to the error gradient for a set of inputs and
% targets. It returns the regularised error gradient using any zero
% mean Gaussian priors on the weights defined in NET. In addition, if
% a MASK is defined in NET, then the entries in G that correspond to
% weights with a 0 in the mask are removed.
%
% [G, GDATA, GPRIOR] = GBAYES(NET, GDATA) additionally returns the data
% and prior components of the error.
%
% See also
% ERRBAYES, GLMGRAD, MLPGRAD, RBFGRAD
%
% Copyright (c) Ian T Nabney (1996-2001)
% Evaluate the data contribution to the gradient.
if (isfield(net, 'mask'))
gdata = gdata(logical(net.mask));
end
if isfield(net, 'beta')
g1 = gdata*net.beta;
else
g1 = gdata;
end
% Evaluate the prior contribution to the gradient.
if isfield(net, 'alpha')
w = netpak(net);
if size(net.alpha) == [1 1]
gprior = w;
g2 = net.alpha*gprior;
else
if (isfield(net, 'mask'))
nindx_cols = size(net.index, 2);
nmask_rows = size(find(net.mask), 1);
index = reshape(net.index(logical(repmat(net.mask, ...
1, nindx_cols))), nmask_rows, nindx_cols);
else
index = net.index;
end
ngroups = size(net.alpha, 1);
gprior = index'.*(ones(ngroups, 1)*w);
g2 = net.alpha'*gprior;
end
else
gprior = 0;
g2 = 0;
end
g = g1 + g2;