-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdemtrain.m
362 lines (303 loc) · 9.69 KB
/
demtrain.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
function demtrain(action);
%DEMTRAIN Demonstrate training of MLP network.
%
% Description
% DEMTRAIN brings up a simple GUI to show the training of an MLP
% network on classification and regression problems. The user should
% load in a dataset (which should be in Netlab format: see DATREAD),
% select the output activation function, the number of cycles and
% hidden units and then train the network. The scaled conjugate
% gradient algorithm is used. A graph shows the evolution of the error:
% the value is shown MAX(CEIL(ITERATIONS / 50), 5) cycles.
%
% Once the network is trained, it is saved to the file MLPTRAIN.NET.
% The results can then be viewed as a confusion matrix (for
% classification problems) or a plot of output versus target (for
% regression problems).
%
% See also
% CONFMAT, DATREAD, MLP, NETOPT, SCG
%
% Copyright (c) Ian T Nabney (1996-2001)
% If run without parameters, initialise gui.
if nargin<1,
action='initialise';
end;
% Global variable to reference GUI figure
global DEMTRAIN_FIG
% Global array to reference sub-figures for results plots
global DEMTRAIN_RES_FIGS
global NUM_DEMTRAIN_RES_FIGS
if strcmp(action,'initialise'),
file = '';
path = '.';
% Create FIGURE
fig = figure( ...
'Name', 'Netlab Demo', ...
'NumberTitle', 'off', ...
'Menubar', 'none', ...
'Color', [0.7529 0.7529 0.7529], ...
'Visible', 'on');
% Initialise the globals
DEMTRAIN_FIG = fig;
DEMTRAIN_RES_FIGS = 0;
NUM_DEMTRAIN_RES_FIGS = 0;
% Create GROUP for buttons
uicontrol(fig, ...
'Style', 'frame', ...
'Units', 'normalized', ...
'Position', [0.03 0.08 0.94 0.22], ...
'BackgroundColor', [0.5 0.5 0.5]);
% Create MAIN axis
hMain = axes( ...
'Units', 'normalized', ...
'Position', [0.10 0.5 0.80 0.40], ...
'XColor', [0 0 0], ...
'YColor', [0 0 0], ...
'Visible', 'on');
% Create static text for FILENAME and PATH
hFilename = uicontrol(fig, ...
'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', [0.7529 0.7529 0.7529], ...
'Position', [0.05 0.32 0.90 0.05], ...
'HorizontalAlignment', 'center', ...
'String', 'Please load data file.', ...
'Visible', 'on');
hPath = uicontrol(fig, ...
'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', [0.7529 0.7529 0.7529], ...
'Position', [0.05 0.37 0.90 0.05], ...
'HorizontalAlignment', 'center', ...
'String', '', ...
'Visible', 'on');
% Create NO OF HIDDEN UNITS slider and text
hSliderText = uicontrol(fig, ...
'Style', 'text', ...
'BackgroundColor', [0.5 0.5 0.5], ...
'Units', 'normalized', ...
'Position', [0.27 0.12 0.17 0.04], ...
'HorizontalAlignment', 'right', ...
'String', 'Hidden Units: 5');
hSlider = uicontrol(fig, ...
'Style', 'slider', ...
'Units', 'normalized', ...
'Position', [0.45 0.12 0.26 0.04], ...
'String', 'Slider', ...
'Min', 1, 'Max', 25, ...
'Value', 5, ...
'Callback', 'demtrain slider_moved');
% Create ITERATIONS slider and text
hIterationsText = uicontrol(fig, ...
'Style', 'text', ...
'BackgroundColor', [0.5 0.5 0.5], ...
'Units', 'normalized', ...
'Position', [0.27 0.21 0.17 0.04], ...
'HorizontalAlignment', 'right', ...
'String', 'Iterations: 50');
hIterations = uicontrol(fig, ...
'Style', 'slider', ...
'Units', 'normalized', ...
'Position', [0.45 0.21 0.26 0.04], ...
'String', 'Slider', ...
'Min', 10, 'Max', 500, ...
'Value', 50, ...
'Callback', 'demtrain iterations_moved');
% Create ACTIVATION FUNCTION popup and text
uicontrol(fig, ...
'Style', 'text', ...
'BackgroundColor', [0.5 0.5 0.5], ...
'Units', 'normalized', ...
'Position', [0.05 0.20 0.20 0.04], ...
'HorizontalAlignment', 'center', ...
'String', 'Activation Function:');
hPopup = uicontrol(fig, ...
'Style', 'popup', ...
'Units', 'normalized', ...
'Position' , [0.05 0.10 0.20 0.08], ...
'String', 'Linear|Logistic|Softmax', ...
'Callback', '');
% Create MENU
hMenu1 = uimenu('Label', 'Load Data file...', 'Callback', '');
uimenu(hMenu1, 'Label', 'Select training data file', ...
'Callback', 'demtrain get_ip_file');
hMenu2 = uimenu('Label', 'Show Results...', 'Callback', '');
uimenu(hMenu2, 'Label', 'Show classification results', ...
'Callback', 'demtrain classify');
uimenu(hMenu2, 'Label', 'Show regression results', ...
'Callback', 'demtrain predict');
% Create START button
hStart = uicontrol(fig, ...
'Units', 'normalized', ...
'Position' , [0.75 0.2 0.20 0.08], ...
'String', 'Start Training', ...
'Enable', 'off',...
'Callback', 'demtrain start');
% Create CLOSE button
uicontrol(fig, ...
'Units', 'normalized', ...
'Position' , [0.75 0.1 0.20 0.08], ...
'String', 'Close', ...
'Callback', 'demtrain close');
% Save handles of important UI objects
hndlList = [hSlider hSliderText hFilename hPath hPopup ...
hIterations hIterationsText hStart];
set(fig, 'UserData', hndlList);
% Hide window from command line
set(fig, 'HandleVisibility', 'callback');
elseif strcmp(action, 'slider_moved'),
% Slider has been moved.
hndlList = get(gcf, 'UserData');
hSlider = hndlList(1);
hSliderText = hndlList(2);
val = get(hSlider, 'Value');
if rem(val, 1) < 0.5, % Force up and down arrows to work!
val = ceil(val);
else
val = floor(val);
end;
set(hSlider, 'Value', val);
set(hSliderText, 'String', ['Hidden Units: ' int2str(val)]);
elseif strcmp(action, 'iterations_moved'),
% Slider has been moved.
hndlList = get(gcf, 'UserData');
hSlider = hndlList(6);
hSliderText = hndlList(7);
val = get(hSlider, 'Value');
set(hSliderText, 'String', ['Iterations: ' int2str(val)]);
elseif strcmp(action, 'get_ip_file'),
% Get data file button pressed.
hndlList = get(gcf, 'UserData');
[file, path] = uigetfile('*.dat', 'Get Data File', 50, 50);
if strcmp(file, '') | file == 0,
set(hndlList(3), 'String', 'No data file loaded.');
set(hndlList(4), 'String', '');
else
set(hndlList(3), 'String', file);
set(hndlList(4), 'String', path);
end;
% Enable training button
set(hndlList(8), 'Enable', 'on');
set(gcf, 'UserData', hndlList);
elseif strcmp(action, 'start'),
% Start training
% Get handles of and values from UI objects
hndlList = get(gcf, 'UserData');
hSlider = hndlList(1); % No of hidden units
hIterations = hndlList(6);
iterations = get(hIterations, 'Value');
hFilename = hndlList(3); % Data file name
filename = get(hFilename, 'String');
hPath = hndlList(4); % Data file path
path = get(hPath, 'String');
hPopup = hndlList(5); % Activation function
if get(hPopup, 'Value') == 1,
act_fn = 'linear';
elseif get(hPopup, 'Value') == 2,
act_fn = 'logistic';
else
act_fn = 'softmax';
end;
nhidden = get(hSlider, 'Value');
% Check data file exists
if fopen([path '/' filename]) == -1,
errordlg('Training data file has not been selected.', 'Error');
else
% Load data file
[x,t,nin,nout,ndata] = datread([path filename]);
% Call MLPTRAIN function repeatedly, while drawing training graph.
figure(DEMTRAIN_FIG);
hold on;
title('Training - please wait.');
% Create net and find initial error
net = mlp(size(x, 2), nhidden, size(t, 2), act_fn);
% Initialise network with inverse variance of 10
net = mlpinit(net, 10);
error = mlperr(net, x, t);
% Work out reporting step: should be sufficiently big to let training
% algorithm have a chance
step = max(ceil(iterations / 50), 5);
% Refresh and rescale axis.
cla;
max = error;
min = max/10;
set(gca, 'YScale', 'log');
ylabel('log Error');
xlabel('No. iterations');
axis([0 iterations min max+1]);
iold = 0;
errold = error;
% Plot circle to show error of last iteration
% Setting erase mode to none prevents screen flashing during
% training
plot(0, error, 'ro', 'EraseMode', 'none');
hold on
drawnow; % Force redraw
for i = step-1:step:iterations,
[net, error] = mlptrain(net, x, t, step);
% Plot line from last point to new point.
line([iold i], [errold error], 'Color', 'r', 'EraseMode', 'none');
iold = i;
errold = error;
% If new point off scale, redraw axes.
if error > max,
max = error;
axis([0 iterations min max+1]);
end;
if error < min
min = error/10;
axis([0 iterations min max+1]);
end
% Plot circle to show error of last iteration
plot(i, error, 'ro', 'EraseMode', 'none');
drawnow; % Force redraw
end;
save mlptrain.net net
zoom on;
title(['Training complete. Final error=', num2str(error)]);
end;
elseif strcmp(action, 'close'),
% Close all the figures we have created
close(DEMTRAIN_FIG);
for n = 1:NUM_DEMTRAIN_RES_FIGS
if ishandle(DEMTRAIN_RES_FIGS(n))
close(DEMTRAIN_RES_FIGS(n));
end
end
elseif strcmp(action, 'classify'),
if fopen('mlptrain.net') == -1,
errordlg('You have not yet trained the network.', 'Error');
else
hndlList = get(gcf, 'UserData');
filename = get(hndlList(3), 'String');
path = get(hndlList(4), 'String');
[x,t,nin,nout,ndata] = datread([path filename]);
load mlptrain.net net -mat
y = mlpfwd(net, x);
% Save results figure so that it can be closed later
NUM_DEMTRAIN_RES_FIGS = NUM_DEMTRAIN_RES_FIGS + 1;
DEMTRAIN_RES_FIGS(NUM_DEMTRAIN_RES_FIGS)=conffig(y,t);
end;
elseif strcmp(action, 'predict'),
if fopen('mlptrain.net') == -1,
errordlg('You have not yet trained the network.', 'Error');
else
hndlList = get(gcf, 'UserData');
filename = get(hndlList(3), 'String');
path = get(hndlList(4), 'String');
[x,t,nin,nout,ndata] = datread([path filename]);
load mlptrain.net net -mat
y = mlpfwd(net, x);
for i = 1:size(y,2),
% Save results figure so that it can be closed later
NUM_DEMTRAIN_RES_FIGS = NUM_DEMTRAIN_RES_FIGS + 1;
DEMTRAIN_RES_FIGS(NUM_DEMTRAIN_RES_FIGS) = figure;
hold on;
title(['Output no ' num2str(i)]);
plot([0 1], [0 1], 'r:');
plot(y(:,i),t(:,i), 'o');
hold off;
end;
end;
end;