-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathidgnn_link.py
218 lines (185 loc) · 7.39 KB
/
idgnn_link.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import argparse
import copy
import json
import os
import warnings
from pathlib import Path
from typing import Dict, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from model import Model
from text_embedder import GloveTextEmbedding
from torch import Tensor
from torch_frame import stype
from torch_frame.config.text_embedder import TextEmbedderConfig
from torch_geometric.loader import NeighborLoader
from torch_geometric.seed import seed_everything
from torch_geometric.typing import NodeType
from tqdm import tqdm
from relbench.base import Dataset, RecommendationTask, TaskType
from relbench.datasets import get_dataset
from relbench.modeling.graph import get_link_train_table_input, make_pkey_fkey_graph
from relbench.modeling.loader import SparseTensor
from relbench.modeling.utils import get_stype_proposal
from relbench.tasks import get_task
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="rel-hm")
parser.add_argument("--task", type=str, default="user-item-purchase")
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--epochs", type=int, default=20)
parser.add_argument("--eval_epochs_interval", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=512)
parser.add_argument("--channels", type=int, default=128)
parser.add_argument("--aggr", type=str, default="sum")
parser.add_argument("--num_layers", type=int, default=2)
parser.add_argument("--num_neighbors", type=int, default=128)
parser.add_argument("--temporal_strategy", type=str, default="last")
parser.add_argument("--max_steps_per_epoch", type=int, default=2000)
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument(
"--cache_dir", type=str, default=os.path.expanduser("~/.cache/relbench_examples")
)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
torch.set_num_threads(1)
seed_everything(args.seed)
dataset: Dataset = get_dataset(args.dataset, download=True)
task: RecommendationTask = get_task(args.dataset, args.task, download=True)
tune_metric = "link_prediction_map"
assert task.task_type == TaskType.LINK_PREDICTION
stypes_cache_path = Path(f"{args.cache_dir}/{args.dataset}/stypes.json")
try:
with open(stypes_cache_path, "r") as f:
col_to_stype_dict = json.load(f)
for table, col_to_stype in col_to_stype_dict.items():
for col, stype_str in col_to_stype.items():
col_to_stype[col] = stype(stype_str)
except FileNotFoundError:
col_to_stype_dict = get_stype_proposal(dataset.get_db())
Path(stypes_cache_path).parent.mkdir(parents=True, exist_ok=True)
with open(stypes_cache_path, "w") as f:
json.dump(col_to_stype_dict, f, indent=2, default=str)
data, col_stats_dict = make_pkey_fkey_graph(
dataset.get_db(),
col_to_stype_dict=col_to_stype_dict,
text_embedder_cfg=TextEmbedderConfig(
text_embedder=GloveTextEmbedding(device=device), batch_size=256
),
cache_dir=f"{args.cache_dir}/{args.dataset}/materialized",
)
num_neighbors = [int(args.num_neighbors // 2**i) for i in range(args.num_layers)]
loader_dict: Dict[str, NeighborLoader] = {}
dst_nodes_dict: Dict[str, Tuple[NodeType, Tensor]] = {}
for split in ["train", "val", "test"]:
table = task.get_table(split)
table_input = get_link_train_table_input(table, task)
dst_nodes_dict[split] = table_input.dst_nodes
loader_dict[split] = NeighborLoader(
data,
num_neighbors=num_neighbors,
time_attr="time",
input_nodes=table_input.src_nodes,
input_time=table_input.src_time,
subgraph_type="bidirectional",
batch_size=args.batch_size,
temporal_strategy=args.temporal_strategy,
shuffle=split == "train",
num_workers=args.num_workers,
persistent_workers=args.num_workers > 0,
)
model = Model(
data=data,
col_stats_dict=col_stats_dict,
num_layers=args.num_layers,
channels=args.channels,
out_channels=1,
aggr=args.aggr,
norm="layer_norm",
id_awareness=True,
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
train_sparse_tensor = SparseTensor(dst_nodes_dict["train"][1], device=device)
def train() -> float:
model.train()
loss_accum = count_accum = 0
steps = 0
total_steps = min(len(loader_dict["train"]), args.max_steps_per_epoch)
for batch in tqdm(loader_dict["train"], total=total_steps):
batch = batch.to(device)
out = model.forward_dst_readout(
batch, task.src_entity_table, task.dst_entity_table
).flatten()
batch_size = batch[task.src_entity_table].batch_size
# Get ground-truth
input_id = batch[task.src_entity_table].input_id
src_batch, dst_index = train_sparse_tensor[input_id]
# Get target label
target = torch.isin(
batch[task.dst_entity_table].batch
+ batch_size * batch[task.dst_entity_table].n_id,
src_batch + batch_size * dst_index,
).float()
# Optimization
optimizer.zero_grad()
loss = F.binary_cross_entropy_with_logits(out, target)
loss.backward()
optimizer.step()
loss_accum += float(loss) * out.numel()
count_accum += out.numel()
steps += 1
if steps > args.max_steps_per_epoch:
break
if count_accum == 0:
warnings.warn(
f"Did not sample a single '{task.dst_entity_table}' "
f"node in any mini-batch. Try to increase the number "
f"of layers/hops and re-try. If you run into memory "
f"issues with deeper nets, decrease the batch size."
)
return loss_accum / count_accum if count_accum > 0 else float("nan")
@torch.no_grad()
def test(loader: NeighborLoader) -> np.ndarray:
model.eval()
pred_list: list[Tensor] = []
for batch in tqdm(loader):
batch = batch.to(device)
out = (
model.forward_dst_readout(
batch, task.src_entity_table, task.dst_entity_table
)
.detach()
.flatten()
)
batch_size = batch[task.src_entity_table].batch_size
scores = torch.zeros(batch_size, task.num_dst_nodes, device=out.device)
scores[
batch[task.dst_entity_table].batch, batch[task.dst_entity_table].n_id
] = torch.sigmoid(out)
_, pred_mini = torch.topk(scores, k=task.eval_k, dim=1)
pred_list.append(pred_mini)
pred = torch.cat(pred_list, dim=0).cpu().numpy()
return pred
state_dict = None
best_val_metric = 0
for epoch in range(1, args.epochs + 1):
train_loss = train()
if epoch % args.eval_epochs_interval == 0:
val_pred = test(loader_dict["val"])
val_metrics = task.evaluate(val_pred, task.get_table("val"))
print(
f"Epoch: {epoch:02d}, Train loss: {train_loss}, "
f"Val metrics: {val_metrics}"
)
if val_metrics[tune_metric] > best_val_metric:
best_val_metric = val_metrics[tune_metric]
state_dict = copy.deepcopy(model.state_dict())
model.load_state_dict(state_dict)
val_pred = test(loader_dict["val"])
val_metrics = task.evaluate(val_pred, task.get_table("val"))
print(f"Best Val metrics: {val_metrics}")
test_pred = test(loader_dict["test"])
test_metrics = task.evaluate(test_pred)
print(f"Best test metrics: {test_metrics}")