You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Collecting environment information...
PyTorch version: 2.0.1+cu117
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A
OS: Manjaro Linux (x86_64)
GCC version: (GCC) 13.2.1 20230801
Clang version: 16.0.6
CMake version: version 3.27.5
Libc version: glibc-2.38
Python version: 3.11.5 (main, Aug 28 2023, 20:02:58) [GCC 13.2.1 20230801] (64-bit runtime)
Python platform: Linux-6.1.51-1-MANJARO-x86_64-with-glibc2.38
Is CUDA available: True
CUDA runtime version: 12.2.91
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1060 6GB
Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/lib/libcudnn.so.8.9.2
/usr/lib/libcudnn_adv_infer.so.8.9.2
/usr/lib/libcudnn_adv_train.so.8.9.2
/usr/lib/libcudnn_cnn_infer.so.8.9.2
/usr/lib/libcudnn_cnn_train.so.8.9.2
/usr/lib/libcudnn_ops_infer.so.8.9.2
/usr/lib/libcudnn_ops_train.so.8.9.2
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
🐛 Bug
Onnxruntime version 1.16 has been released yesterday. If I use it to load silero-vad using onnx=True, i get
Oddly enough, it works if I downgrade to
1.15
even if it's telling me this has been a thing since ORT 1.9.To Reproduce
Steps to reproduce the behavior:
pip install onnxruntime==1.16.0
Full stack trace:
Expected behavior
Environment
Collecting environment information...
PyTorch version: 2.0.1+cu117
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A
OS: Manjaro Linux (x86_64)
GCC version: (GCC) 13.2.1 20230801
Clang version: 16.0.6
CMake version: version 3.27.5
Libc version: glibc-2.38
Python version: 3.11.5 (main, Aug 28 2023, 20:02:58) [GCC 13.2.1 20230801] (64-bit runtime)
Python platform: Linux-6.1.51-1-MANJARO-x86_64-with-glibc2.38
Is CUDA available: True
CUDA runtime version: 12.2.91
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1060 6GB
Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/lib/libcudnn.so.8.9.2
/usr/lib/libcudnn_adv_infer.so.8.9.2
/usr/lib/libcudnn_adv_train.so.8.9.2
/usr/lib/libcudnn_cnn_infer.so.8.9.2
/usr/lib/libcudnn_cnn_train.so.8.9.2
/usr/lib/libcudnn_ops_infer.so.8.9.2
/usr/lib/libcudnn_ops_train.so.8.9.2
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architektur: x86_64
CPU Operationsmodus: 32-bit, 64-bit
Adressgrößen: 48 bits physical, 48 bits virtual
Byte-Reihenfolge: Little Endian
CPU(s): 8
Liste der Online-CPU(s): 0-7
Anbieterkennung: AuthenticAMD
Modellname: AMD FX(tm)-8350 Eight-Core Processor
Prozessorfamilie: 21
Modell: 2
Thread(s) pro Kern: 2
Kern(e) pro Sockel: 4
Sockel: 1
Stepping: 0
Übertaktung: aktiviert
Skalierung der CPU(s): 69%
Maximale Taktfrequenz der CPU: 4000,0000
Minimale Taktfrequenz der CPU: 1400,0000
BogoMIPS: 8002,06
Markierungen: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs xop skinit wdt fma4 tce nodeid_msr tbm topoext perfctr_core perfctr_nb cpb hw_pstate ssbd ibpb vmmcall bmi1 arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold
Virtualisierung: AMD-V
L1d Cache: 128 KiB (8 Instanzen)
L1i Cache: 256 KiB (4 Instanzen)
L2 Cache: 8 MiB (4 Instanzen)
L3 Cache: 8 MiB (1 Instanz)
NUMA-Knoten: 1
NUMA-Knoten0 CPU(s): 0-7
Versions of relevant libraries:
[pip3] numpy==1.25.2
[pip3] pytorch-lightning==2.0.9
[pip3] pytorch-metric-learning==2.3.0
[pip3] torch==2.0.1
[pip3] torch-audiomentations==0.11.0
[pip3] torch-pitch-shift==1.2.4
[pip3] torchaudio==2.0.2
[pip3] torchmetrics==1.1.2
[pip3] triton==2.0.0
[conda] Could not collect
The text was updated successfully, but these errors were encountered: