Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

❓ No onnx gpu support? #365

Closed
CircuitCM opened this issue Aug 15, 2023 · 6 comments
Closed

❓ No onnx gpu support? #365

CircuitCM opened this issue Aug 15, 2023 · 6 comments
Assignees
Labels
help wanted Extra attention is needed v5 Useful information for V5 release

Comments

@CircuitCM
Copy link

CircuitCM commented Aug 15, 2023

Hi,

Just wondering is there no onnx gpu support? Would it not be any faster than jit when moving the model to CUDA with a .to() ?

This is what happened:

pip install onnxruntime-gpu

Cell In[3], line 1
----> 1 model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
      2                               model='silero_vad',
      3                               force_reload=False,
      4                               onnx=True)
      5 SAMPLE_RATE = 16000
      7 (get_speech_timestamps,
      8  save_audio,
      9  read_audio,
     10  VADIterator,
     11  collect_chunks) = utils

File ~\mambaforge\envs\AIPlayground310pip\lib\site-packages\torch\hub.py:558, in load(repo_or_dir, model, source, trust_repo, force_reload, verbose, skip_validation, *args, **kwargs)
    554 if source == 'github':
    555     repo_or_dir = _get_cache_or_reload(repo_or_dir, force_reload, trust_repo, "load",
    556                                        verbose=verbose, skip_validation=skip_validation)
--> 558 model = _load_local(repo_or_dir, model, *args, **kwargs)
    559 return model

File ~\mambaforge\envs\AIPlayground310pip\lib\site-packages\torch\hub.py:587, in _load_local(hubconf_dir, model, *args, **kwargs)
    584     hub_module = _import_module(MODULE_HUBCONF, hubconf_path)
    586     entry = _load_entry_from_hubconf(hub_module, model)
--> 587     model = entry(*args, **kwargs)
    589 return model

File ~/.cache\torch\hub\snakers4_silero-vad_master\hubconf.py:44, in silero_vad(onnx, force_onnx_cpu)
     42 model_dir = os.path.join(os.path.dirname(__file__), 'files')
     43 if onnx:
---> 44     model = OnnxWrapper(os.path.join(model_dir, 'silero_vad.onnx'), force_onnx_cpu)
     45 else:
     46     model = init_jit_model(os.path.join(model_dir, 'silero_vad.jit'))

File ~/.cache\torch\hub\snakers4_silero-vad_master\utils_vad.py:24, in OnnxWrapper.__init__(self, path, force_onnx_cpu)
     22     self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'], sess_options=opts)
     23 else:
---> 24     self.session = onnxruntime.InferenceSession(path, sess_options=opts)
     26 self.reset_states()
     27 self.sample_rates = [8000, 16000]

File ~\mambaforge\envs\AIPlayground310pip\lib\site-packages\onnxruntime\capi\onnxruntime_inference_collection.py:396, in InferenceSession.__init__(self, path_or_bytes, sess_options, providers, provider_options, **kwargs)
    394         raise fallback_error from e
    395 # Fallback is disabled. Raise the original error.
--> 396 raise e

File ~\mambaforge\envs\AIPlayground310pip\lib\site-packages\onnxruntime\capi\onnxruntime_inference_collection.py:383, in InferenceSession.__init__(self, path_or_bytes, sess_options, providers, provider_options, **kwargs)
    380 disabled_optimizers = kwargs["disabled_optimizers"] if "disabled_optimizers" in kwargs else None
    382 try:
--> 383     self._create_inference_session(providers, provider_options, disabled_optimizers)
    384 except (ValueError, RuntimeError) as e:
    385     if self._enable_fallback:

File ~\mambaforge\envs\AIPlayground310pip\lib\site-packages\onnxruntime\capi\onnxruntime_inference_collection.py:415, in InferenceSession._create_inference_session(self, providers, provider_options, disabled_optimizers)
    413 if not providers and len(available_providers) > 1:
    414     self.disable_fallback()
--> 415     raise ValueError(
    416         f"This ORT build has {available_providers} enabled. "
    417         "Since ORT 1.9, you are required to explicitly set "
    418         "the providers parameter when instantiating InferenceSession. For example, "
    419         f"onnxruntime.InferenceSession(..., providers={available_providers}, ...)"
    420     )
    422 session_options = self._sess_options if self._sess_options else C.get_default_session_options()
    423 if self._model_path:

ValueError: This ORT build has ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'] enabled. Since ORT 1.9, you are required to explicitly set the providers parameter when instantiating InferenceSession. For example, onnxruntime.InferenceSession(..., providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'], ...)
@CircuitCM CircuitCM added the help wanted Extra attention is needed label Aug 15, 2023
@suki-fahmad
Copy link

suki-fahmad commented Sep 28, 2023

@snakers4 I'm also seeing issues with onnxruntime-gpu. This is the exception I'm seeing:

onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running If node. Name:'If_25' Status Message: Non-zero status code returned while running FusedConv node. Name:'Conv_139' Status Message: CUDNN failure 3: CUDNN_STATUS_BAD_PARAM ; GPU=0 ; hostname=ml-feroz ; file=/onnxruntime_src/onnxruntime/contrib_ops/cuda/fused_conv.cc ; line=85 ; expr=cudnnAddTensor(cudnnHandle, &alpha, Base::s_.z_tensor, Base::s_.z_data, &alpha, Base::s_.y_tensor, Base::s_.y_data); 

I'm using onnxruntime-gpu-1.15.1

@chazo1994
Copy link

@snakers4 I'm also seeing issues with onnxruntime-gpu. This is the exception I'm seeing:

onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running If node. Name:'If_25' Status Message: Non-zero status code returned while running FusedConv node. Name:'Conv_139' Status Message: CUDNN failure 3: CUDNN_STATUS_BAD_PARAM ; GPU=0 ; hostname=ml-feroz ; file=/onnxruntime_src/onnxruntime/contrib_ops/cuda/fused_conv.cc ; line=85 ; expr=cudnnAddTensor(cudnnHandle, &alpha, Base::s_.z_tensor, Base::s_.z_data, &alpha, Base::s_.y_tensor, Base::s_.y_data); 

I'm using onnxruntime-gpu-1.15.1

I am also having this problem

@snakers4 snakers4 added the v5 Useful information for V5 release label Dec 5, 2023
@snakers4
Copy link
Owner

snakers4 commented Dec 5, 2023

The VAD is not really meant to run on GPU, but maybe with a new ONNX export it will just work.

@jsoto-gladia
Copy link

you can remove the error with
opts.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
however the perforamnces are horrible.

@jsoto-gladia
Copy link

@snakers4 how can I do a new onnx export withtout the actual source code ?

@snakers4
Copy link
Owner

The new VAD version was released just now - #2 (comment)

Can you please re-run your and tests and if the issue persists - please open a new issue

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
help wanted Extra attention is needed v5 Useful information for V5 release
Projects
None yet
Development

No branches or pull requests

5 participants