-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathternary_arith.f90
357 lines (295 loc) · 8.01 KB
/
ternary_arith.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
!-------------------------------------------------------------------------------
! Компилируемое алгоритмическое описание троичной машины Сетунь-70.
!
! (c) 2023 Станислав Масловский <[email protected]>
!
! Модуль поддержки троичной арифметики на основе массивов тритов.
!-------------------------------------------------------------------------------
module ternary_arith
implicit none
integer, parameter :: tsz = selected_int_kind(1)
! Trit cell type
type :: Trit
sequence
integer(tsz) :: val
end type
! Constructor
interface Trit
module procedure modulo_tri
end interface
! Assignment
interface assignment (=)
module procedure assign_i2t, assign_t2i, assign_i2ta, assign_ta2i
end interface
! Explicit type conversion
interface integer
module procedure plus_t, plus_ta
end interface
interface character
module procedure char_t
end interface
! Arithmetic operations
interface operator (+)
module procedure plus_t, plus_ta, add_i_t, add_i_ta, add_ta_ta
end interface
interface operator (-)
module procedure minus_t, minus_ta, sub_i_t, sub_i_ta, sub_ta_ta
end interface
interface operator (*)
module procedure mul_t_t, mul_i_ta, mul_ta_i, mul_ta_ta
end interface
interface operator (/)
module procedure div_ta_i
end interface
! Logical operations
interface operator (==)
module procedure eq_t_t, eq_t_i, eq_ta_i, eq_ta_ta
end interface
interface operator (/=)
module procedure neq_t_t, neq_t_i, neq_ta_i, neq_ta_ta
end interface
interface operator (>)
module procedure gt_ta_i, gt_ta_ta
end interface
interface operator (<=)
module procedure le_ta_i, le_ta_ta
end interface
interface operator (<)
module procedure lt_ta_i, lt_ta_ta
end interface
interface operator (>=)
module procedure ge_ta_i, ge_ta_ta
end interface
contains
pure function modulo_tri(i) result(t)
integer, intent(in) :: i
type(Trit) :: t
integer :: r
r = mod(i, 3)
select case (r)
case (-2)
t%val = +1
case (+2)
t%val = -1
case default
t%val = r
end select
end function
subroutine assign_i2t(t, i)
type(Trit), intent(out) :: t
integer, intent(in) :: i
t = modulo_tri(i)
end subroutine
subroutine assign_i2ta(ta, i)
type(Trit), dimension(:), intent(out) :: ta
integer, intent(in) :: i
integer :: d, j
d = i
do j = size(ta), 1, -1
ta(j) = modulo_tri(d)
d = (d - ta(j)%val) / 3
enddo
end subroutine
subroutine assign_t2i(i, t)
integer, intent(out) :: i
type(Trit), intent(in) :: t
i = t%val
end subroutine
subroutine assign_ta2i(i, ta)
integer, intent(out) :: i
type(Trit), dimension(:), intent(in) :: ta
integer :: j
i = 0
do j = 1, size(ta)
i = 3*i + ta(j)%val
enddo
end subroutine
elemental function plus_t(t) result(res)
type(Trit), intent(in) :: t
integer :: res
res = t%val
end function
function plus_ta(ta) result(res)
type(Trit), dimension(:), intent(in) :: ta
integer :: res
res = ta
end function
function add_i_t(t, i) result(res)
integer, intent(in) :: i
type(Trit), intent(in) :: t
integer :: res
res = t%val + i
end function
function add_i_ta(ta, i) result(res)
integer, intent(in) :: i
type(Trit), dimension(:), intent(in) :: ta
integer :: res
res = ta
res = res + i
end function
function add_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
integer :: res
res = tb
res = ta + res
end function
function minus_t(t) result(res)
type(Trit), intent(in) :: t
integer :: res
res = -t%val
end function
function minus_ta(ta) result(res)
type(Trit), dimension(:), intent(in) :: ta
integer :: res
res = ta
res = -res
end function
function sub_i_t(t, i) result(res)
integer, intent(in) :: i
type(Trit), intent(in) :: t
integer :: res
res = t + (-i)
end function
function sub_i_ta(ta, i) result(res)
integer, intent(in) :: i
type(Trit), dimension(:), intent(in) :: ta
integer :: res
res = ta + (-i)
end function
function sub_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
integer :: res
res = ta + (-tb)
end function
function mul_t_t(t1, t2) result(res)
type(Trit), intent(in) :: t1, t2
integer :: res
res = t1%val * t2%val
end function
function mul_i_ta(ta, i) result(res)
integer, intent(in) :: i
type(Trit), dimension(:), intent(in) :: ta
integer :: res
res = ta
res = res * i
end function
function mul_ta_i(i, ta) result(res)
integer, intent(in) :: i
type(Trit), dimension(:), intent(in) :: ta
integer :: res
res = ta * i
end function
function mul_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
integer :: res
res = tb
res = ta * res
end function
function div_ta_i(ta, i) result(res)
integer, intent(in) :: i
type(Trit), dimension(:), intent(in) :: ta
integer :: res
res = ta
res = res / i
end function
function eq_t_t(t1, t2) result(res)
type(Trit), intent(in) :: t1, t2
logical :: res
res = t1%val == t2%val
end function
function eq_t_i(t, i) result(res)
type(Trit), intent(in) :: t
integer, intent(in) :: i
logical :: res
res = t%val == i
end function
function eq_ta_i(ta, i) result(res)
type(Trit), dimension(:), intent(in) :: ta
integer, intent(in) :: i
logical :: res
res = integer(ta) == i
end function
function eq_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
logical :: res
res = integer(ta) == integer(tb)
end function
function neq_t_t(t1, t2) result(res)
type(Trit), intent(in) :: t1, t2
logical :: res
res = .not. (t1 == t2)
end function
function neq_t_i(t, i) result(res)
type(Trit), intent(in) :: t
integer, intent(in) :: i
logical :: res
res = .not. (t == i)
end function
function neq_ta_i(ta, i) result(res)
type(Trit), dimension(:), intent(in) :: ta
integer, intent(in) :: i
logical :: res
res = .not. (ta == i)
end function
function neq_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
logical :: res
res = .not. (ta == tb)
end function
function gt_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
logical :: res
res = integer(ta) > integer(tb)
end function
function le_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
logical :: res
res = .not. (ta > tb)
end function
function gt_ta_i(ta, i) result(res)
type(Trit), dimension(:), intent(in) :: ta
integer, intent(in) :: i
logical :: res
res = integer(ta) > i
end function
function le_ta_i(ta, i) result(res)
type(Trit), dimension(:), intent(in) :: ta
integer, intent(in) :: i
logical :: res
res = .not. (ta > i)
end function
function lt_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
logical :: res
res = integer(ta) < integer(tb)
end function
function ge_ta_ta(ta, tb) result(res)
type(Trit), dimension(:), intent(in) :: ta, tb
logical :: res
res = .not. (ta < tb)
end function
function lt_ta_i(ta, i) result(res)
type(Trit), dimension(:), intent(in) :: ta
integer, intent(in) :: i
logical :: res
res = integer(ta) < i
end function
function ge_ta_i(ta, i) result(res)
type(Trit), dimension(:), intent(in) :: ta
integer, intent(in) :: i
logical :: res
res = .not. (ta < i)
end function
elemental function char_t(t) result(res)
type(Trit), intent(in) :: t
character :: res
select case(t%val)
case(-1)
res = "M"
case(0)
res = "0"
case(+1)
res = "P"
end select
end function
end module ternary_arith