Skip to content

Commit 00fb486

Browse files
committed
In Naive Bayes, avoid using Option::unwrap and so avoid panicking from NaN values
1 parent 9c07925 commit 00fb486

File tree

1 file changed

+78
-10
lines changed

1 file changed

+78
-10
lines changed

src/naive_bayes/mod.rs

Lines changed: 78 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ use crate::linalg::basic::arrays::{Array1, Array2, ArrayView1};
4040
use crate::numbers::basenum::Number;
4141
#[cfg(feature = "serde")]
4242
use serde::{Deserialize, Serialize};
43-
use std::marker::PhantomData;
43+
use std::{cmp::Ordering, marker::PhantomData};
4444

4545
/// Distribution used in the Naive Bayes classifier.
4646
pub(crate) trait NBDistribution<X: Number, Y: Number>: Clone {
@@ -92,11 +92,9 @@ impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>, D: NBDistribution<TX,
9292
/// Returns a vector of size N with class estimates.
9393
pub fn predict(&self, x: &X) -> Result<Y, Failed> {
9494
let y_classes = self.distribution.classes();
95-
let (rows, _) = x.shape();
96-
let predictions = (0..rows)
97-
.map(|row_index| {
98-
let row = x.get_row(row_index);
99-
let (prediction, _probability) = y_classes
95+
let predictions = x.row_iter()
96+
.map(|row| {
97+
y_classes
10098
.iter()
10199
.enumerate()
102100
.map(|(class_index, class)| {
@@ -106,11 +104,28 @@ impl<TX: Number, TY: Number, X: Array2<TX>, Y: Array1<TY>, D: NBDistribution<TX,
106104
+ self.distribution.prior(class_index).ln(),
107105
)
108106
})
109-
.max_by(|(_, p1), (_, p2)| p1.partial_cmp(p2).unwrap())
110-
.unwrap();
111-
*prediction
107+
// For some reason, the max_by method cannot use NaNs for finding the maximum value, it panics.
108+
// NaN must be considered as minimum values,
109+
// therefore it's like NaNs would not be considered for choosing the maximum value.
110+
// So we need to handle this case for avoiding panicking by using `Option::unwrap`.
111+
.max_by(|(_, p1), (_, p2)| {
112+
match p1.partial_cmp(p2) {
113+
Some(ordering) => ordering,
114+
None => {
115+
if p1.is_nan() {
116+
Ordering::Less
117+
} else if p2.is_nan() {
118+
Ordering::Greater
119+
} else {
120+
Ordering::Equal
121+
}
122+
}
123+
}
124+
})
125+
.map(|(prediction, _probability)| *prediction)
126+
.ok_or_else(|| Failed::predict("Failed to predict, there is no result"))
112127
})
113-
.collect::<Vec<TY>>();
128+
.collect::<Result<Vec<TY>, Failed>>()?;
114129
let y_hat = Y::from_vec_slice(&predictions);
115130
Ok(y_hat)
116131
}
@@ -119,3 +134,56 @@ pub mod bernoulli;
119134
pub mod categorical;
120135
pub mod gaussian;
121136
pub mod multinomial;
137+
138+
#[cfg(test)]
139+
mod tests {
140+
use super::*;
141+
use crate::linalg::basic::matrix::DenseMatrix;
142+
use num_traits::float::Float;
143+
use crate::linalg::basic::arrays::Array;
144+
145+
type Model<'d> = BaseNaiveBayes<i32, i32, DenseMatrix<i32>, Vec<i32>, TestDistribution<'d>>;
146+
147+
#[derive(Debug, PartialEq, Clone)]
148+
struct TestDistribution<'d>(&'d Vec<i32>);
149+
150+
impl<'d> NBDistribution<i32, i32> for TestDistribution<'d> {
151+
fn prior(&self, _class_index: usize) -> f64 {
152+
1.
153+
}
154+
155+
fn log_likelihood<'a>(&'a self, class_index: usize, _j: &'a Box<dyn ArrayView1<i32> + 'a>) -> f64 {
156+
match self.0.get(class_index) {
157+
&v @ 2| &v @ 10| &v @ 20 => v as f64,
158+
_ => f64::nan(),
159+
}
160+
}
161+
162+
fn classes(&self) -> &Vec<i32> {
163+
&self.0
164+
}
165+
}
166+
167+
#[test]
168+
fn test_predict() {
169+
let matrix = DenseMatrix::from_2d_array(&[&[1, 2, 3], &[4, 5, 6], &[7, 8, 9]]);
170+
171+
let val = vec![];
172+
match Model::fit(TestDistribution(&val)).unwrap().predict(&matrix) {
173+
Ok(_) => panic!("Should return error in case of empty classes"),
174+
Err(err) => assert_eq!(err.to_string(), "Predict failed: Failed to predict, there is no result"),
175+
}
176+
177+
let val = vec![1, 2, 3];
178+
match Model::fit(TestDistribution(&val)).unwrap().predict(&matrix) {
179+
Ok(r) => assert_eq!(r, vec![2, 2, 2]),
180+
Err(_) => panic!("Should success in normal case with NaNs"),
181+
}
182+
183+
let val = vec![20, 2, 10];
184+
match Model::fit(TestDistribution(&val)).unwrap().predict(&matrix) {
185+
Ok(r) => assert_eq!(r, vec![20, 20, 20]),
186+
Err(_) => panic!("Should success in normal case without NaNs"),
187+
}
188+
}
189+
}

0 commit comments

Comments
 (0)