
The Meteor Project
Insightful, Efficient and Responsive App for Analyzing and Visualizing Hangzhou Metro

Chi Zhang (aka. Alex Chi) iskyzh@sjtu.edu.cn

Dec, 2019

Abstract
Meteor is an insightful, efficient and responsive app for analyzing Hangzhou metro.

With records from automated fare collection system, Meteor helps metro passengers travel
efficiently by visualizing per-station inflow and outflow data, and planning route based on
segment pressure and historical travel time. It analyzes data efficiently with the help of
SQLite and a task-based background scheduling system. And it exploits macOS features
such as Touch Bar to provide a flawless data navigation experience. Meteor succeeded in
maintaining a balance between analysis efficiency and analysis insightfulness. WithMeteor,
some interesting data patterns are observed.

1 Introduction
The aim of Meteor is to promote efficient travel in metro system. This paper is organized into
three parts.

• How does Meteor do analysis?
Section 2 discusses the implementation ofMeteor in a bottom-to-top approach: the under-
lying database organization, the task scheduling system and the integration with macOS.

• What analyses are done?
In section 3, analysis results are shown.

• How fast and reliable is Meteor app?
Evaluation of the Meteor App is presented in section 4 to demonstrate that it provides
efficient and reliable data analysis.

2 Implementation
A close integration with SQLite enables efficient data query and fine-grained data analysis in
Meteor. And a task-based background scheduling system makes data analysis easy to imple-
ment, transparent to users and fault-tolerent. Meteor also supports Magic Trackpad and Touch
Bar to provide a flawless data navigation experience.

2.1 Data Organization and Analysis
Storing data in database such as SQLite makes it efficient to filter, process and count data.
Meteor exploits SQLite to provide efficient data anslysis.

In the database there’re four tables: dataset, flow-analysis, smart-travel and journal. Details of
these tables are discussed below.

1



dataset table
time int lineID text stationID text deviceID text status int userID text payType int

flow table
start_time int enter_station_id int exit_station_id int time_block int flow int

smart-travel table
start_time int enter_station_id int exit_station_id int time_block int flow_sum int flow_n int

journal table
journal_id text completed_at int

2.1.1 Reading Dataset
Meteor transforms data in .csv into records in database, and stores them in dataset table. All
datetime strings are transformed to UNIX timestamp, therefore these records can be sorted and
filtered by time efficiently. Meanwhile, an index is created to make filtering faster. This index
builds on time, stationID, lineID, status.

2.1.2 Flow Analysis and Smart Travel Time
Meteor can estimate pressure of each metro segment by flow analysis. By pairing records of
entering and exiting stations from a single user, Meteor estimates where the user should be in
a 5-minute time window. Then number of users on a metro segment can be evaluated. This is
so-called flow analysis. These data are cached in flow-analysis table.

Travel time estimation uses a 1-minute time window, and these data are cached in smart-
travel table. The estimation depends on kNN (k nearest neighbours) algorithm. To make the
process more efficient, departure time of each record is bucketed into a 1-minute window,
which means only date, hour and minute are stored. Assume that ETA is only related to de-
parture weekday, time, entry and exit station. Distance is defined as below, where I is entry
station, O is exit station, D is departure time of one bucket and n is sample size of that bucket.
Larger sample size means more credibility, thus reducing distance. f(x, y) computes the short-
est distance on map between station x and station y.

dist(Xi, X) = 10× f(Ii, I)
2 + 10× f(Oi, O)2 + (Di −D)2 +

5

n2
i

This simple model gives reasonable travel time. As data are not sufficient to evaluate the
model, in this paper, accuracy of this model won’t be discussed.

2.1.3 Journal
The date and time when each task completes is stored in journal table. Each time when a task
is to be scheduled, the scheduler will check if a task has been done before by querying journal
table.

2.1.4 Route Planning
Meteor uses breadth-first search to plan the shortest route. After obtaining a sequence of station
ID, Meteor will then find more detailed information, for example, where to transfer.

To obtain transfer data, all stations along one metro line should be known in advance. Sta-
tions on line A and line C can be found by obtaining the shortest route between the starting
station and the terminal. And there’re some special cases. Line B has a Y-shape. There’re two
terminal stations (station 33, station 27) on line B in one direction, and the shortest route be-
tween starting (0) and terminal station (33 or 27) requires a transfer to line A. Therefore, Meteor

2



temporarily removes the connection between station 79 and 80 before finding the stations along
line B, and split 0-33, 0-27 into two lines B1 and B2.

Therefore, if a station S in route isn’t on the current metro line, it can be deduced that a
passenger should transfer to current metro line at the station before S.

Combining flow analysis and smart travel time, Meteor shows estimated arrival time at
each station, and calculates crowded rate of each segment. This functionality is called Meteor
Adviser.

2.2 Task Scheduling
All computational works are organized in tasks. A task is a thread emitting signals such as
success, progress and message, which can be managed by task scheduling system. This abstrac-
tion simplifies the way to implement scheduling system and retains developer’s freedom to
run their own task on Meteor.

A custom task-scheduling system is implemented in Meteor to make data loading and pro-
cessing fast, efficient, seamless and fault-tolerent. Examples of tasks include initialize database,
flow analysis of Jan 9, and read dataset of Jan 10.

The scheduler runs in a standalone thread. It acts as a bridge between tasks and GUI. Inside
the scheduler is a task queue, which is indeed a double-ended queue. GUI thread requests the
scheduler to run a task, and receive signals on currently-running tasks and their progress. The
scheduler pushes newly-scheduled task to the end of the queue and its dependencies to the
front of the queue. When a task completes (the success signal is emitted from the task), the
scheduler will notify GUI thread, clean up previous task object, pick the next task in queue and
run it. Only one task runs at a time.

Lazy loading technique is employed in the scheduling system, which means tasks will be
executed on-demand. For example, if a user just requires flow analysis of Jan 9, only these tasks
will be executed: initialize database, read dataset of Jan 9, flow analysis of Jan 9 and query data. The
system automatically resolves dependencies of these tasks, and schedules them in order in a
background thread.

Tasks can be journaled, which means they will be executed only once on one’s computer.
For example, if a user requires inflow and outflow data from Jan 9 after flow analysis of that
day, only query data task will be executed, as database has already been intialized and dataset
is already in database.

All tasks are fault-tolerent as they clean up possible garbage data in database before exe-
cuting. This technique is commonly referred as rollback in database systems. For example, if
the app crashes when reading dataset, after restarting, the reading dataset task is not journaled.
Therefore, it is in either of the two states: it never runs, or it crashed. By cleaning up all records
with date Jan 9, the database stays consistent.

Meanwhile, all tasks support gracefully termination. Each task periodically check the atomic
bool variable cancel. If it is true, the task will stop, and the program may shutdown gracefully.

2.3 macOS Integration
There’re some exclusive features inmacOS, such asMagic Trackpadwith gestures support, and
the Touch Bar which makes controls available at your fingertip. The former one is compatible
with most GUI programming frameworks, and the latter one requires extra engineering effort.

Integrating with Magic Trackpad for flexible scroll is trivial as it triggers mouseWheel event
in Qt.

However, much more effort is required to exploit the Touch Bar. It requires a building sys-
tem with Objective-C target support, and a mechanism to call Objective-C functions from C++
code.

3



CMake is used to build the Meteor project. The building system recognizes Objective-C
source files, which ends with .mm. In touchbar.mm, it’s possible to call AppKit framework of
macOS and implement TouchbarProvider.

Multiple global functions are decleared in common headers, hence enabling two-way com-
munication between macOS APIs and Qt. This makes it possible to check if a button is pressed
on Touch Bar in MainWindow, and to set the value of a slider on Touch Bar from MainWindow.

3 Analysis Result
3.1 Inflow and Outflow
From the chart we may easily observe the data pattern.

(a) Daily Data (b) Hourly Data

Figure 1: Inflow and outflow for Fengqi Road Station at 2019-01-10

As shown in Figure 1 (a), 8:30am and 6pm is generally peak hour for all stations. If a station
has a larger outflow in the morning, it will have a larger inflow in the evening.

And in Figure 1 (b), for each station, there’re regular peaks in outflow data. With this infor-
mation we may deduce arrival time of each train.

3.2 Flow Analysis for Segment Pressure
With flow analysis, some data patterns are observed.

Left: Line 1 in 2019-01-09, (top-to-bottom) 7:00am, 8:00am, 9:00am, 10:00am
Right: Line 2 in 2019-01-12, (top-to-bottom) 11:56pm, 11:58pm, 12:00am, 12:02am

Upper lane for left to right pressure, lower lane for right to left.

Figure 2: Flow data for Line 1 and Line 2

As shown in Figure 2 (a), on weekdays, segment volume reaches it peak at 5pm and 8am.
As shown in Figure 2 (b), significant flow appears at terminal stations at the end of service
hours.

4



3.3 Route Planning and Smart Travel Time
Meteor will show where to transfer in route details. And it draws a map of metro lines with
real world station names to make route more readable. With Meteor advisor, users may find
estimated arrival time of each station in route. Generally the kNNmodelwill output reasonable
ETA. And crowded rate is shown in map. This can be seen in Figure 3.

Figure 3: Route planning with Meteor Adviser enabled

4 Evaluation and Discussion
Evaluation is done on MacBook Pro (15-inch, 2017). Build Meteor with CMake Release mode,
then run the program. Set Meteor to use in-memory database in wizard. Then, run benchmark.
Run the benchmark for three times to obtain the evaluation result. Result is shown in Table 1.

Table 1: Evaluation Result
Task Number of Tests per Epoch Average Time (ms)
Read Dataset (1 day) 2 28301.17
Entry / Exit Query (Daily) 10 3820.76
Entry / Exit Query (Hourly) 10 515.06
Flow Analysis (1 day) 1 13809.67
Query Segment Pressure 10 280.83
Plan Route 50 2.91
Smart Travel Analysis (1 day) 1 16635.33
Smart Travel Predict 10 1766.03

After heavy data processing and analysis (e.g. read dataset, flow analysis, smart travel analysis),
query tasks perform very fast. Therefore, Meteor succeeded in maintaining a balance between
analysis efficiency and analysis insightfulness. With several optimization and caching tech-
niques, Meteor exploits full potential of SQLite. In a nutshell, Meteor provides a variety of
data analysis perspectives while keeping the analysis process relatively fast.

Meteor is licensed under GNU General Public License 3. This project will be open-sourced
after the course ends. The Qt project laid a solid foundation for this project. And also thank
ZQ Zhao for inspiring me use an in-memory database instead of a persist-to-disk one, hence
providing better performance.

5


	Introduction
	Implementation
	Data Organization and Analysis
	Reading Dataset
	Flow Analysis and Smart Travel Time
	Journal
	Route Planning

	Task Scheduling
	macOS Integration

	Analysis Result
	Inflow and Outflow
	Flow Analysis for Segment Pressure
	Route Planning and Smart Travel Time

	Evaluation and Discussion

