-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
52 lines (42 loc) · 1.78 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import matplotlib.pyplot as plt
from torchvision import *
import numpy as np
import torch
DEVICE = 'cpu'
data = datasets.MNIST('Data', download=True)
mnist_full_x = data.data
mnist_full_y = data.targets
'''
Loader code
it splits the data into training and validation set
it returns two generators
'''
def RamLoad(dataset, labels, split=1, batch_size=1,
t_trans=transforms.Compose([]), v_trans=transforms.Compose([])):
class RamLoader(torch.utils.data.DataLoader):
def __init__(self, data, labels, transform, **kwargs):
super().__init__(torch.utils.data.TensorDataset(data,labels), **kwargs)
self.dataset.transform = transform
indices = torch.randperm(dataset.shape[0])
split_point = int(split*dataset.shape[0])
train_data = dataset[ indices[:split_point] ]; train_labels= labels[ indices[:split_point] ]
valid_data = dataset[ indices[split_point:] ]; valid_labels= labels[ indices[split_point:] ]
return {'train':RamLoader(train_data, train_labels, transform=t_trans, batch_size=batch_size, shuffle=True),
'eval' :RamLoader(valid_data, valid_labels, transform=v_trans, batch_size=batch_size, shuffle=False)}
'''
Useful data transformations
'''
class TransformFlatten:
def __call__(self, x):
return x.view(x.shape[0], -1)
class TransformStandarize:
def __init__(self, mean=0, std=1):
self.mean, self.std = mean, std
def __call__(self, x):
return (x - torch.mean(x) + self.mean) / torch.std(x) * self.std
'''
Data is ready from here
'''
tmnist_x = TransformStandarize()(torch.tensor(mnist_full_x, device=DEVICE, dtype=torch.float))
tmnist_y = torch.tensor(mnist_full_y, device=DEVICE, dtype=torch.long)
RamLoader = RamLoad(tmnist_x, tmnist_y, split=0.85, batch_size=128)