-
Notifications
You must be signed in to change notification settings - Fork 4
/
data_presister.py
222 lines (169 loc) · 9.61 KB
/
data_presister.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import itertools
import json
import os
from collections import defaultdict
from itertools import zip_longest
from typing import List, Optional, Dict
import numpy as np
from Job.JobBuilder import default_params
from Plotting.plot_params import EXP_ATTRS
from Plotting.plot_utils import load_and_replace_large_nan_inf
from Registry.AlgRegistry import alg_dict
from utils import Configuration
def split_dict_of_list_to_dicts(dict_of_list: Dict[str, list]) -> List[Dict[str, float]]:
"""split a given dictionary of lists into list of dictionaries.
>>> split_dict_of_list_to_dicts({'alpha': [1, 2, 3], 'lambda': [4, 5], 'gamma': [6]})
[{'alpha': 1, 'lambda': 4, 'gamma': 6}, {'alpha': 1, 'lambda': 5, 'gamma': 6}, {'alpha': 2, 'lambda': 4, 'gamma': 6}, {'alpha': 2, 'lambda': 5, 'gamma': 6}, {'alpha': 3, 'lambda': 4, 'gamma': 6}, {'alpha': 3, 'lambda': 5, 'gamma': 6}]
Args:
dict_of_list (Dict[str, list]): a dictionary of lists.
Returns:
List[Dict[str, float]]: list of dictionaries.
"""
keys = dict_of_list.keys()
values = [[e for e in result if e is not None] for result in itertools.product(*dict_of_list.values())]
result = [dict(zip(keys, v)) for v in values]
return result
def group_dicts_by_first_key(list_of_dicts: List[Dict[str, float]]) -> Dict[str, List[Dict[str, float]]]:
"""
>>> group_dicts_by_first_key([{'alpha': 1, 'lambda': 4, 'gamma': 6}, {'alpha': 1, 'lambda': 5, 'gamma': 6}, {'alpha': 2, 'lambda': 4, 'gamma': 6}, {'alpha': 2, 'lambda': 5, 'gamma': 6}, {'alpha': 3, 'lambda': 4, 'gamma': 6}, {'alpha': 3, 'lambda': 5, 'gamma': 6}])
{1: [{'alpha': 1, 'lambda': 4, 'gamma': 6}, {'alpha': 1, 'lambda': 5, 'gamma': 6}], 2: [{'alpha': 2, 'lambda': 4, 'gamma': 6}, {'alpha': 2, 'lambda': 5, 'gamma': 6}], 3: [{'alpha': 3, 'lambda': 4, 'gamma': 6}, {'alpha': 3, 'lambda': 5, 'gamma': 6}]}
"""
first_key = get_first_key_of_dictionary(list_of_dicts[0])
final_grouped = defaultdict(list)
for inner_dict in list_of_dicts:
final_grouped[inner_dict[first_key]].append(inner_dict)
return dict(final_grouped)
def group_dicts_over_first_key(list_of_dicts: List[Dict[str, float]]) -> Dict[tuple, List[float]]:
"""
>>> group_dicts_over_first_key([{'alpha': 1, 'lambda': 4, 'gamma': 6}, {'alpha': 1, 'lambda': 5, 'gamma': 6}, {'alpha': 2, 'lambda': 4, 'gamma': 6}, {'alpha': 2, 'lambda': 5, 'gamma': 6}, {'alpha': 3, 'lambda': 4, 'gamma': 6}, {'alpha': 3, 'lambda': 5, 'gamma': 6}])
{(('lambda', 4), ('gamma', 6)): [1, 2, 3], (('lambda', 5), ('gamma', 6)): [1, 2, 3]}
:param list_of_dicts:
:return:
"""
first_key = get_first_key_of_dictionary(list_of_dicts[0])
final_grouped = defaultdict(list)
for inner_dict in list_of_dicts:
first_value = inner_dict[first_key]
del inner_dict[first_key]
final_grouped[tuple(inner_dict.items())].append(first_value)
return dict(final_grouped)
def find_best_performance(exp_name, alg_name, second_param, auc_or_final) -> Dict[str, float]:
exp_attrs = EXP_ATTRS[exp_name](exp_name)
best_params = {}
best_perf = np.inf
all_configuration = JsonParameterBuilder().add_experiment(exp_name).add_algorithm(alg_name).build()
list_of_configuration = split_dict_of_list_to_dicts(all_configuration)
first_param_key = get_first_key_of_dictionary(all_configuration)
grouped_over_first = group_dicts_over_first_key(list_of_configuration)
for grouped, first_values in grouped_over_first.items():
second_param_name, second_param_value = grouped[0]
if second_param_value != second_param:
continue
grouped_params = dict(grouped)
current_params = Configuration(grouped_params)
current_params[first_param_key] = None
current_params.algorithm = alg_name
current_params.save_path = PathFactory.make_result_path(exp_name, alg_name)
current_params.rerun = False
current_configuration_over_first_full_path = DataPersister.create_full_path_file_name(f'_mean_{auc_or_final}_over_alpha', current_params,
excluded_params=[first_param_key])
current_perf = load_and_replace_large_nan_inf(
current_configuration_over_first_full_path, large=exp_attrs.learning_starting_point, replace_with=exp_attrs.over_limit_replacement)
min_perf = min(current_perf)
if min_perf < best_perf:
best_perf = min_perf
best_perf_idx = int(np.nanargmin(current_perf))
best_params = current_params
best_params[first_param_key] = first_values[best_perf_idx]
return best_params
def get_first_key_of_dictionary(d: dict) -> str:
return list(d.keys())[0]
class ParameterBuilder:
def __init__(self):
self.final_params_dict = dict()
def add_algorithm_params(self, configuration: Configuration):
for k in alg_dict[configuration.algorithm].related_parameters():
self.final_params_dict[k] = configuration[k]
return self
def build(self):
return self.final_params_dict
class JsonParameterBuilder:
def __init__(self):
self.final_params_dict = dict()
self.exp_name = None
self.alg_name = None
self.alg_related_params = None
def add_experiment(self, exp_name):
self.exp_name = exp_name
return self
def add_algorithm(self, alg_name):
self.alg_name = alg_name
self.alg_related_params = alg_dict[alg_name].related_parameters()
return self
def build(self) -> Dict[str, list]:
json_path = PathFactory.make_experiment_path(self.exp_name, self.alg_name)
with open(json_path) as f:
json_config = json.load(f)
for param_name in self.alg_related_params:
self.final_params_dict[param_name] = list(json_config['meta_parameters'].get(param_name, [default_params['meta_parameters'][param_name]]))
return self.final_params_dict
class PathFactory:
@staticmethod
def make_experiment_path(exp_name, alg_name):
return os.path.join(os.getcwd(), 'Experiments', exp_name, alg_name, f'{alg_name}.json')
@staticmethod
def make_result_path(exp_name, alg_name):
return os.path.join(os.getcwd(), 'Results', exp_name, alg_name)
class DataPersister:
@staticmethod
def save_result(result_arr: np.ndarray, result_name: str, configuration: Configuration, excluded_params: Optional[list] = None):
full_path_file_to_save = DataPersister.create_full_path_file_name(result_name, configuration, excluded_params)
if not os.path.exists(os.path.dirname(full_path_file_to_save)):
os.makedirs(os.path.dirname(full_path_file_to_save))
np.save(full_path_file_to_save, result_arr)
@staticmethod
def save_best_pref_over_first_param(exp_name, alg_name, auc_or_final):
all_configuration = JsonParameterBuilder().add_experiment(exp_name).add_algorithm(alg_name).build()
list_of_configuration = split_dict_of_list_to_dicts(all_configuration)
first_param_key = get_first_key_of_dictionary(all_configuration)
first_param_length = len(all_configuration[first_param_key])
mean_over_alpha, stderr_over_alpha = np.zeros(first_param_length), np.zeros(first_param_length)
grouped_over_first = group_dicts_over_first_key(list_of_configuration)
for grouped, first_values in grouped_over_first.items():
grouped_params = dict(grouped)
current_params = Configuration(grouped_params)
current_params[first_param_key] = None
current_params.algorithm = alg_name
current_params.save_path = PathFactory.make_result_path(exp_name, alg_name)
current_params.rerun = False
for index, first_value in enumerate(first_values):
current_params[first_param_key] = first_value
full_path_file_to_save = DataPersister.create_full_path_file_name(f'_mean_stderr_{auc_or_final}', current_params)
# perf = np.load(full_path_file_to_save)
# mean_over_alpha[index], stderr_over_alpha[index] = perf[0], perf[1]
# TODO: in case the rerun postfix is needed it should implement
DataPersister.save_result(mean_over_alpha, f"_mean_{auc_or_final}_over_alpha", current_params, excluded_params=[first_param_key])
DataPersister.save_result(stderr_over_alpha, f"_stderr_{auc_or_final}_over_alpha", current_params, excluded_params=[first_param_key])
@staticmethod
def create_full_path_file_name(result_name: str, configuration: Configuration, excluded_params: Optional[list] = None) -> str:
params = ParameterBuilder().add_algorithm_params(configuration).build()
file_name_to_save = DataPersister.create_file_name(params, excluded_params=excluded_params)
full_path_file_to_save = os.path.join(configuration.save_path, file_name_to_save)
full_path_file_to_save = f'{full_path_file_to_save}{result_name}'
if configuration.rerun:
full_path_file_to_save = f'{full_path_file_to_save}_rerun'
return f'{full_path_file_to_save}.npy'
@staticmethod
def create_file_name(param: dict, excluded_params: Optional[list]) -> str:
if excluded_params is None:
excluded_params = []
final_str = ''
for k, v in param.items():
if k in excluded_params:
continue
if k == 'alpha' or k == 'eta':
split_str = str.split(f'{v:.10f}', '.')
else:
split_str = str.split(f'{v:.5f}', '.')
final_str += '_' + k + split_str[0] + split_str[1]
return final_str