-
Notifications
You must be signed in to change notification settings - Fork 351
/
cst_fully.hpp
980 lines (868 loc) · 31.8 KB
/
cst_fully.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
/*! \file cst_fully.hpp
\brief cst_fully.hpp contains an implementation of Russo et al.'s Fully-Compressed Suffix Tree.
\author Christian Ocker, Simon Gog
*/
#ifndef INCLUDED_SDSL_CST_FULLY
#define INCLUDED_SDSL_CST_FULLY
#include "bit_vectors.hpp"
#include "bp_support.hpp"
#include "suffix_arrays.hpp"
#include "util.hpp"
#include "vectors.hpp"
#include "cst_sada.hpp"
#include "cst_iterators.hpp"
#include "sdsl_concepts.hpp"
#include "construct.hpp"
#include "suffix_tree_helper.hpp"
#include "suffix_tree_algorithm.hpp"
namespace sdsl
{
template<typename t_cst>
class lcp_fully
{
public:
typedef typename t_cst::size_type size_type;
typedef size_type value_type;
typedef random_access_const_iterator<lcp_fully> const_iterator;
typedef const_iterator iterator;
typedef lcp_tag lcp_category;
enum { fast_access = 0,
text_order = 0,
sa_order = 0
};
private:
const t_cst* m_cst;
public:
lcp_fully() = default;
lcp_fully(const t_cst* cst) : m_cst(cst) {};
lcp_fully(const lcp_fully&) = default;
lcp_fully(lcp_fully&&) = default;
lcp_fully& operator=(const lcp_fully&) = default;
lcp_fully& operator=(lcp_fully&&) = default;
~lcp_fully() = default;
size_type size() const
{
return m_cst->size();
}
value_type operator[](size_type i) const
{
if (0 == i) {
return 0;
} else {
using leaf_type = typename t_cst::leaf_type;
using char_type = typename t_cst::char_type;
using sampled_node_type = typename t_cst::sampled_node_type;
leaf_type v_l = i-1;
leaf_type v_r = i;
size_type i;
sampled_node_type u;
std::vector<char_type> c(m_cst->delta, 0);
return m_cst->depth_lca(v_l, v_r, i, u, c);
}
}
//! Returns a const_iterator to the first element.
const_iterator begin()const
{
return const_iterator(this, 0);
}
//! Returns a const_iterator to the element after the last element.
const_iterator end()const
{
return const_iterator(this, size());
}
};
//! A class for the Fully-Compressed Suffix Tree (FCST) proposed by Russo et al.
/*!
* \tparam t_csa Type of a CSA (member of this type is accessible via
* member `csa`, default class is sdsl::wt).
* \tparam t_delta Value of the sampling parameter. Larger values result
* in lower space consumption while requiring more time.
* For `t_delta` = 0, delta = log n log log n is used.
* \tparam t_s_support Type of a BPS structure (member accessible via member
* `s_support`, default class is sdsl::bp_support_sada),
* \tparam t_b Type of a bit vector for the leaf mapping (member
* accessible via member `b`, default class is
* sdsl::sd_vector),
* \tparam t_depth Type of an integer vector for the depth of the sampled
* nodes (member accessible via member `depth_sampling`,
* default class is sdsl::dac_vector),
* \tparam t_sample_leaves Boolean value indicating whether leaves are to be
* sampled. This is helpful for debugging purposes.
*
* It also contains a sdsl::bit_vector which represents the balanced
* parentheses sequence of the sampled tree. This bit_vector can be accessed
* via member `s`.
*
* A node `v` of the `cst_fully` is represented by an integer `i` which
* corresponds to the position of the opening parenthesis of the parentheses
* pair \f$(i,\mu(i))\f$ that corresponds to `v` in `s`.
*
* \par Reference
* Russo, Lu{\'\i}s and Navarro, Gonzalo and Oliveira, Arlindo L:
* Fully Compressed Suffix Trees.
* ACM Transactions on Algorithms (TALG), vol. 7, no. 4, p. 53, 2011
*
* @ingroup cst
*/
template<class t_csa = csa_wt<>,
uint32_t t_delta = 0,
class t_s_support = bp_support_sada<>,
class t_b = sd_vector<>,
class t_depth = dac_vector<>,
bool t_sample_leaves = false
>
class cst_fully
{
public:
typedef cst_dfs_const_forward_iterator<cst_fully> const_iterator;
typedef typename t_csa::size_type size_type;
typedef t_csa csa_type;
typedef lcp_fully<cst_fully> lcp_type;
typedef typename t_csa::char_type char_type;
typedef std::pair<size_type, size_type> node_type; // Nodes are represented by their interval over the CSA
typedef size_type leaf_type; // Index of a leaf
typedef size_type sampled_node_type; // Node in the sampled tree represented by its index in s
typedef t_s_support s_support_type;
typedef t_b b_type;
typedef typename t_b::select_0_type b_select_0_type;
typedef typename t_b::select_1_type b_select_1_type;
typedef t_depth depth_type;
typedef typename t_csa::alphabet_category alphabet_category;
typedef cst_tag index_category;
private:
size_type m_delta;
size_type m_nodes;
csa_type m_csa;
bit_vector m_s;
s_support_type m_s_support;
b_type m_b;
b_select_0_type m_b_select0;
b_select_1_type m_b_select1;
depth_type m_depth;
lcp_type m_lcp = lcp_type(this);
void copy(const cst_fully& cst)
{
m_delta = cst.m_delta;
m_nodes = cst.m_nodes;
m_csa = cst.m_csa;
m_s = cst.m_s;
m_s_support = cst.m_s_support;
m_s_support.set_vector(&m_s);
m_b = cst.m_b;
m_b_select0 = cst.m_b_select0;
m_b_select0.set_vector(&m_b);
m_b_select1 = cst.m_b_select1;
m_b_select1.set_vector(&m_b);
m_depth = cst.m_depth;
}
public:
const size_type& delta = m_delta;
const csa_type& csa = m_csa;
const bit_vector& s = m_s;
const s_support_type& s_support = m_s_support;
const b_type& b = m_b;
const b_select_0_type& b_select_0 = m_b_select0;
const b_select_1_type& b_select_1 = m_b_select1;
const depth_type& depth_sampling = m_depth;
const lcp_type& lcp = m_lcp;
//! Default constructor
cst_fully() {}
//! Copy constructor
cst_fully(const cst_fully& cst)
{
copy(cst);
}
//! Move constructor
cst_fully(cst_fully&& cst)
{
*this = std::move(cst);
}
//! Construct CST from file_map
cst_fully(cache_config& config);
size_type size() const
{
return m_csa.size();
}
static size_type max_size()
{
return t_csa::max_size();
}
bool empty() const
{
return m_csa.empty();
}
void swap(cst_fully& cst)
{
if (this != &cst) {
std::swap(m_delta, cst.m_delta);
std::swap(m_nodes, cst.m_nodes);
m_csa.swap(cst.m_csa);
m_s.swap(cst.m_s);
util::swap_support(m_s_support, cst.m_s_support, &m_s, &(cst.m_s));
m_b.swap(cst.m_b);
util::swap_support(m_b_select0, cst.m_b_select0, &m_b, &(cst.m_b));
util::swap_support(m_b_select1, cst.m_b_select1, &m_b, &(cst.m_b));
m_depth.swap(cst.m_depth);
}
}
const_iterator begin() const
{
if (m_b.size() == 0) {
return end();
}
return const_iterator(this, root(), false, true);
}
const_iterator end() const
{
return const_iterator(this, root(), true, false);
}
//! Copy Assignment Operator.
cst_fully& operator=(const cst_fully& cst)
{
if (this != &cst) {
copy(cst);
}
return *this;
}
//! Move Assignment Operator.
cst_fully& operator=(cst_fully &&cst)
{
if (this != &cst) {
m_delta = cst.m_delta;
m_nodes = cst.m_nodes;
m_csa = std::move(cst.m_csa);
m_s = std::move(cst.m_s);
m_s_support = std::move(cst.m_s_support);
m_s_support.set_vector(&m_s);
m_b = std::move(cst.m_b);
m_b_select0 = std::move(cst.m_b_select0);
m_b_select0.set_vector(&m_b);
m_b_select1 = std::move(cst.m_b_select1);
m_b_select1.set_vector(&m_b);
m_depth = std::move(cst.m_depth);
}
return *this;
}
//! Serialize to a stream.
/*! \param out Outstream to write the data structure.
* \return The number of written bytes.
*/
size_type serialize(std::ostream& out, structure_tree_node* v=nullptr, std::string name="") const
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += write_member(m_delta, out, child, "m_delta");
written_bytes += write_member(m_nodes, out, child, "m_nodes");
written_bytes += m_csa.serialize(out, child, "csa");
written_bytes += m_s.serialize(out, child, "s");
written_bytes += m_s_support.serialize(out, child, "s_support");
written_bytes += m_b.serialize(out, child, "b");
written_bytes += m_b_select0.serialize(out, child, "b_select0");
written_bytes += m_b_select1.serialize(out, child, "b_select1");
written_bytes += m_depth.serialize(out, child, "depth");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
//! Load from a stream.
/*! \param in Inputstream to load the data structure from.
*/
void load(std::istream& in)
{
read_member(m_delta, in);
read_member(m_nodes, in);
m_csa.load(in);
m_s.load(in);
m_s_support.load(in, &m_s);
m_b.load(in);
m_b_select0.load(in, &m_b);
m_b_select1.load(in, &m_b);
m_depth.load(in);
}
//! Returns the root of the suffix tree.
node_type root() const
{
return node_type(0, m_csa.size() - 1);
}
//! Returns the root of the sampled tree.
sampled_node_type sampled_root() const
{
return 0;
}
//! Returns true iff node v is a leaf.
bool is_leaf(node_type v) const
{
return v.first == v.second;
}
//! Return the i-th leaf (1-based from left to right) of the suffix tree.
/*!
* \param i 1-based position of the leaf. \f$1\leq i\leq csa.size()\f$.
* \return The i-th leave.
* \par Time complexity
* \f$ \Order{1} \f$
* \pre \f$ 1 \leq i \leq csa.size() \f$
*/
node_type select_leaf(size_type i) const
{
assert(i > 0 and i <= m_csa.size());
return node_type(i - 1, i - 1);
}
//! Get the node in the suffix tree which corresponds to the sa-interval [lb..rb]
node_type node(size_type lb, size_type rb) const
{
return node_type(lb, rb);
}
//! Returns the leftmost leaf (left boundary) of a node.
leaf_type lb(node_type v) const
{
return v.first;
}
//! Returns the rightmost leaf (right boundary) of a node.
leaf_type rb(node_type v) const
{
return v.second;
}
//! Calculate the number of leaves in the subtree rooted at node v.
/*! \param v A valid node of the suffix tree.
* \return The number of leaves in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
size_type size(const node_type& v) const
{
return v.second-v.first+1;
}
//! Calculates the leftmost leaf in the subtree rooted at node v.
/*! \param v A valid node of the suffix tree.
* \return The leftmost leaf in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type leftmost_leaf(const node_type v) const
{
return node_type(v.first, v.first);
}
//! Calculates the rightmost leaf in the subtree rooted at node v.
/*!\param v A valid node of the suffix tree.
* \return The rightmost leaf in the subtree rooted at node v.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type rightmost_leaf(const node_type v) const
{
return node_type(v.second, v.second);
}
//! Returns true iff v is an ancestor of w.
bool ancestor(node_type v, node_type w) const
{
return v.first <= w.first && v.second >= w.second;
}
//! Returns the index of the last bracket in S before the leaf with index l.
/*!
* \param v The index of leaf l.
* \return The index of the last bracket in S before the leaf with index l.
*/
sampled_node_type pred(leaf_type v) const
{
return m_b_select0.select(v + 1) - v - 1;
}
//! Returns the LSA (lowest sampled ancestor) for a leaf with index l.
/*!
* \param v The index of leaf l.
* \return The LSA for the leaf with index l.
* \par Time complexity
* \f$ \Order{1} \f$
*/
sampled_node_type lsa_leaf(leaf_type l) const
{
sampled_node_type p = pred(l);
if (m_s[p]) {
return p;
} else {
return m_s_support.enclose(m_s_support.find_open(p));
}
}
//! Returns the node in the suffix tree corresponding to the node u in the sampled tree.
/*!
* \param v The node u in the sampled tree.
* \return The node in the suffix tree corresponding to the node u in the sampled tree.
* \par Time complexity
* \f$ \Order{1} \f$
*/
node_type sampled_node(sampled_node_type u) const
{
assert(m_s[u] == 1);
size_type u_end = m_s_support.find_close(u);
size_type b_left = m_b_select1.select(u + 1);
size_type b_right = m_b_select1.select(u_end + 1);
return node_type(b_left - u,
b_right - u_end - 1);
}
//! Returns the LCA of two nodes in the sampled tree.
/*!
* \param u The sampled node u.
* \param q The sampled node q.
* \return The lowest common ancestor of u and q in the sampled tree.
* \par Time complexity
* \f$ \Order{\rrenclose} \f$
*/
sampled_node_type sampled_lca(sampled_node_type u, sampled_node_type q) const
{
assert(m_s[u] == 1 and m_s[q] == 1);
if (u > q) {
std::swap(u, q);
} else if (u == q) {
return u;
}
if (u == sampled_root()) {
return sampled_root();
}
if (m_s_support.find_close(u) > q) {
return u;
}
return m_s_support.double_enclose(u, q);
}
//! Returns the depth of a sampled node u.
/*!
* \param u A sampled node u.
* \return The depth of sampled node u.
* \par Time complexity
* \f$ \Order{1} \f$
*/
size_type depth(sampled_node_type u) const
{
assert(m_s[u] == 1);
size_type idx = m_s_support.rank(u) - 1;
return m_depth[idx] * (m_delta / 2);
}
//! Returns the depth of a node v.
/*!
* \param v The node v.
* \return The depth of node v.
* \par Time complexity
* \f$ \Order( \delta ) \f$ for inner nodes,
* \f$ \Order( \saaccess ) \f$ for leaves.
*/
size_type depth(node_type v) const
{
if (is_leaf(v)) {
return m_csa.size() - m_csa[v.first];
}
size_type i;
sampled_node_type u;
std::vector<char_type> c;
c.reserve(delta);
return depth_lca(v.first, v.second, i, u, c);
}
//! Calculate the LCA of two nodes v and w.
/*!
* \param v The node v.
* \param w The node w.
* \return The LCA of v and w.
* \par Time complexity
* \f$ \Order( \delta \cdot ( 1 + t_{rank\_bwt} ) ) \f$
*/
node_type lca(node_type v, node_type w) const
{
leaf_type l = std::min(v.first, w.first);
leaf_type r = std::max(v.second, w.second);
if (l == r) {
return node_type(l, r);
} else {
return lca(l, r);
}
}
//! Calculate the LCA of two leaves l and r.
/*!
* \param l The index of leaf l.
* \param r The index of leaf r. \f$ r > l \f$
* \return The LCA of l and r.
* \par Time complexity
* \f$ \Order( \delta \cdot ( 1 + t_{rank\_bwt} ) ) \f$
*/
node_type lca(leaf_type l, leaf_type r) const
{
assert(l<r);
size_type i;
sampled_node_type u;
std::vector<char_type> c(delta, 0);
depth_lca(l, r, i, u, c);
node_type v = sampled_node(u);
leaf_type lb = v.first;
leaf_type rb = v.second;
for (size_type k = 0; k < i; k++) {
backward_search(m_csa, lb, rb, c[i - k - 1], lb, rb);
}
return node_type(lb, rb);
}
//! Calculate the depth of the LCA of two leaves l and r.
/*!
* \param l The index of leaf l.
* \param r The index of leaf r. \f$ r > l \f$
* \param res_i The index i for the ancestor used to determine the depth (return value).
* \param res_u The ancestor used to determine the depth (return value).
* \param res_label The label from the found sampled node to the actual LCA.
* \return The depth of the LCA of l and r.
* \par Time complexity
* \f$ \Order( \delta ) \f$
*/
// TODO: return by reference really necessary?
size_type depth_lca(leaf_type l, leaf_type r,
size_type& res_i, sampled_node_type& res_u, std::vector<char_type>& res_label) const
{
assert(l<r);
size_type max_d = 0;
size_type max_d_i = 0;
sampled_node_type max_d_node = 0;
for (size_type i = 0; i < m_delta; i++) {
sampled_node_type node = sampled_lca(lsa_leaf(l), lsa_leaf(r));
size_type d = i + depth(node);
if (d > max_d) {
max_d = d;
max_d_i = i;
max_d_node = node;
}
char_type c = m_csa.F[l];
char_type comp = csa.char2comp[c];
res_label[i] = c;
// break if LCA of lb and rb is root
if (l < m_csa.C[comp] || r >= m_csa.C[comp + 1]) {
break;
}
l = m_csa.psi[l];
r = m_csa.psi[r];
}
res_i = max_d_i;
res_u = max_d_node;
return max_d;
}
//! Compute the suffix link of a node v.
/*!
* \param v The node v.
* \return The suffix link of node v or root() if v equals root().
* \par Time complexity
* \f$ \Order( \delta \cdot ( 1 + t_{rank\_bwt} ) ) \f$
*/
node_type sl(node_type v) const
{
if (v == root()) {
return root();
} else if (is_leaf(v)) {
size_t leaf = m_csa.psi[v.first];
return node_type(leaf, leaf);
}
return lca(m_csa.psi[v.first], m_csa.psi[v.second]);
}
//! Compute the Weiner link of node v and character c.
/*
* \param v A valid node of a cst_fully.
* \param c The character which should be prepended to the string of the current node.
* \return root() if the Weiner link of (v, c) does not exist, otherwise the Weiner link is returned.
* \par Time complexity
* \f$ \Order{ t_{rank\_bwt} + t_{lca}}\f$
*/
node_type wl(node_type v, const char_type c) const
{
size_type l, r;
std::tie(l, r) = v;
backward_search(m_csa, l, r, c, l, r);
return node_type(l, r);
}
//! Compute the suffix number of a leaf node v.
/*!\param v A valid leaf node of a cst_sada.
* \return The suffix array value corresponding to the leaf node v.
* \par Time complexity
* \f$ \Order{ \saaccess } \f$
*/
size_type sn(node_type v) const
{
assert(is_leaf(v));
return m_csa[v.first];
}
//! Calculate the parent node of a node v.
/*!
* \param v The node v.
* \return The parent node of v or root() if v equals root().
* \par Time complexity
* \f$ \Order( \delta \cdot ( 1 + t_{rank\_bwt} ) ) \f$
*/
node_type parent(node_type v) const
{
const leaf_type l = v.first;
const leaf_type r = v.second;
node_type left_parent = root();
node_type right_parent = root();
if (l > 0) {
left_parent = lca(l-1, r);
}
if (r < m_csa.size() - 1) {
right_parent = lca(l, r+1);
}
return ancestor(right_parent, left_parent) ? left_parent : right_parent;
}
//! Get the child w of node v which edge label (v,w) starts with character c.
/*!
* \param v A node v.
* \param c First character of the edge label from v to the desired child.
* \return The child node w which edge label (v,w) starts with c or root() if it does not exist.
* \par Time complexity
* \f$ \Order{ \log m \cdot (\saaccess+\isaaccess) } \f$
where \f$ m \f$ is the number of leaves in the subtree rooted at node v.
*/
node_type child(node_type v, char_type c) const
{
if (is_leaf(v)) {
return root();
}
size_type d = depth(v);
return child(v, c, d);
}
node_type child(node_type v, char_type c, size_type d) const
{
leaf_type lower;
leaf_type upper;
{
leaf_type begin = v.first;
leaf_type end = v.second + 1;
while (begin < end) {
leaf_type sample_pos = (begin + end) / 2;
size_type char_pos = get_char_pos(sample_pos, d, m_csa);
char_type sample = m_csa.F[char_pos];
if (sample < c) {
begin = sample_pos + 1;
} else {
end = sample_pos;
}
}
lower = begin;
}
{
leaf_type begin = v.first;
leaf_type end = v.second + 1;
while (begin < end) {
leaf_type sample_pos = (begin + end) / 2;
size_type char_pos = get_char_pos(sample_pos, d, m_csa);
char_type sample = m_csa.F[char_pos];
if (sample <= c) {
begin = sample_pos + 1;
} else {
end = sample_pos;
}
}
upper = begin;
}
if (lower == upper) {
return root();
}
return node_type(lower, upper - 1);
}
//! Get the i-th child of a node v.
/*!
* \param v A valid tree node of the cst.
* \param i 1-based Index of the child which should be returned. \f $i \geq 1 \f$.
* \return The i-th child node of v or root() if v has no i-th child.
*/
node_type select_child(node_type v, size_type i) const
{
if (is_leaf(v)) {
return root();
}
size_type d = depth(v);
size_type char_pos = get_char_pos(v.first, d, m_csa);
char_type c = m_csa.F[char_pos];
node_type res = child(v, c, d);
while (i > 1) {
if (res.second >= v.second) {
return root();
}
char_pos = get_char_pos(res.second + 1, d, m_csa);
c = m_csa.F[char_pos];
res = child(v, c, d);
i--;
}
return res;
}
//! Get the number of children of a node v.
/*!
* \param v A valid node v.
* \returns The number of children of node v.
*/
size_type degree(const node_type& v)const
{
if (is_leaf(v)) {
return 0;
} else {
size_type res = 1;
size_type d = depth(v);
size_type char_pos = get_char_pos(v.first, d, m_csa);
char_type c = m_csa.F[char_pos];
node_type v_i = child(v, c, d);
while (v_i.second < v.second) {
++res;
char_pos = get_char_pos(v_i.second + 1, d, m_csa);
c = m_csa.F[char_pos];
v_i = child(v, c, d);
}
return res;
}
}
//! Return a proxy object which allows iterating over the children of a node
/*! \param v A valid node of the suffix tree.
* \return The proxy object of v containing all children
*/
cst_node_child_proxy<cst_fully> children(const node_type& v) const
{
return cst_node_child_proxy<cst_fully>(this,v);
}
//! Returns the next sibling of node v.
/*!
* \param v A valid node v of the suffix tree.
* \return The next (right) sibling of node v or root() if v has no next sibling.
*/
node_type sibling(node_type v) const
{
node_type p = parent(v);
if (v.second >= p.second) {
return root();
}
size_type d = depth(p);
size_type char_pos = get_char_pos(v.second + 1, d, m_csa);
char_type c = m_csa.F[char_pos];
return child(p, c, d);
}
char_type edge(node_type v, size_type d) const
{
assert(d >= 1 and d <= depth(v));
size_type char_pos = get_char_pos(v.first, d - 1, m_csa);
return m_csa.F[char_pos];
}
//! Returns the node depth of node v
/*!
* \param v A valid node of a cst_fully
* \return The node depth of node v.
*/
size_type node_depth(node_type v)const
{
size_type d = 0;
while (v != root()) {
++d;
v = parent(v);
}
return d;
}
//! Get the number of nodes of the suffix tree.
size_type nodes()const
{
return m_nodes;
}
//! Get the number of nodes in the sampled tree.
/*!
* \return The number of nodes in the sampled tree.
* \par Time complexity
* \f$ \Order{1} \f$
*/
size_type sampled_nodes() const
{
return m_s.size() / 2;
}
};
template<class t_csa, uint32_t t_delta, class t_s_support, class t_b, class t_depth, bool t_sample_leaves>
cst_fully<t_csa, t_delta, t_s_support, t_b, t_depth, t_sample_leaves>::cst_fully(cache_config& config)
{
// 1. Construct CST
cst_sada<csa_type, lcp_dac<> > cst(config);
m_nodes = cst.nodes();
if (t_delta > 0) {
m_delta = t_delta;
} else {
const size_type n = cst.size();
m_delta = (bits::hi(n-1)+1) * (bits::hi(bits::hi(n-1))+1);
if (m_delta < 2) {
m_delta = 2;
}
}
size_type delta_half = m_delta / 2;
bit_vector is_sampled(cst.nodes(), false);
is_sampled[cst.id(cst.root())] = true; // always sample root
size_type sample_count = 1;
// 2a. Scan and mark leaves to be sampled
if (t_sample_leaves) {
auto event = memory_monitor::event("scan-leaves");
size_type leaf_idx = 0;
for (size_type i = 0; i < cst.size(); i++) {
const size_type d = i + 1;
if (d + delta_half <= cst.size() and
d % delta_half == 0) {
const auto node = cst.select_leaf(leaf_idx + 1);
const size_type id = cst.id(node);
if (!is_sampled[id]) {
is_sampled[id] = true;
sample_count++;
}
}
leaf_idx = cst.csa.lf[leaf_idx];
}
}
// 2b. Scan and mark inner nodes to be sampled
{
auto event = memory_monitor::event("scan-nodes");
for (auto it = cst.begin(); it != cst.end(); ++it) {
if (it.visit() == 1 and cst.is_leaf(*it) == false) {
const auto node = *it;
const size_type d = cst.depth(node);
if (d % delta_half == 0) {
auto v = cst.sl(node, delta_half);
const size_type id = cst.id(v);
if (!is_sampled[id]) {
is_sampled[id] = true;
sample_count++;
}
}
}
}
}
m_s.resize(2 * sample_count);
util::set_to_value(m_s, 0);
bit_vector tmp_b(2 * sample_count + cst.size(), 0);
int_vector<64> tmp_depth;
tmp_depth.resize(sample_count);
// 3. Create sampled tree data structures
{
auto event = memory_monitor::event("node-sampling");
size_type s_idx = 0;
size_type b_idx = 0;
size_type sample_idx = 0;
for (auto it = cst.begin(); it != cst.end(); ++it) {
auto node = *it;
if (it.visit() == 1 && is_sampled[cst.id(node)]) {
m_s[s_idx++] = 1;
tmp_b[b_idx++] = 1;
tmp_depth[sample_idx++] = cst.depth(node) / delta_half;
}
if (cst.is_leaf(node)) {
b_idx++;
}
if ((cst.is_leaf(node) || it.visit() == 2) && is_sampled[cst.id(node)]) {
s_idx++;
tmp_b[b_idx++] = 1;
}
}
}
{
auto event = memory_monitor::event("ss-depth");
m_csa = std::move(cst.csa);
util::init_support(m_s_support, &m_s);
m_b = b_type(tmp_b);
util::init_support(m_b_select0, &m_b);
util::init_support(m_b_select1, &m_b);
m_depth = depth_type(tmp_depth);
}
}
}// end namespace sdsl
// TODO: make dependent on cst_fully
template<class T>
std::ostream& operator<<(std::ostream& os, const std::pair<T, T>& v)
{
os << "[" << v.first << ", " << v.second << "]";
return os;
}
#endif // INCLUDED_SDSL_CST_FULLY