-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_ssdd.py
150 lines (141 loc) · 6 KB
/
main_ssdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import time
import numpy as np
import torch.nn as nn
import torch
import ssdd_val as val
#import ssdd_test as test
import train_dssdd
import train_sssdd
import precompute_sssdd
ROOT_DIR = os.getcwd()
#VOC_ROOT = os.environ['voc_root']
VOC_ROOT = 'voc_root'
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")
class Config():
OUT_SHAPE = (112,112)
INP_SHAPE = (448,448)
LEARNING_MOMENTUM = 0.9
WEIGHT_DECAY = 2e-4
NUM_CLASSES = 21
LEARNING_RATE=1e-3
############################################################
# Dataset
############################################################
class PascalDataset():
def load(self):
image_dir = VOC_ROOT +'/JPEGImages'
fn='data/trainaug_id.txt'
f = open(fn,'r')
image_ids = f.read().splitlines()
f.close()
self.image_ids=image_ids
label_listn='data/trainaug_labels.txt'
label_list=np.loadtxt(label_listn)
label_dic={}
for i in range(len(image_ids)):
label=label_list[i]
label_dic[image_ids[i]]=label_list[i]
self.label_dic=label_dic
def load_val(self):
image_dir = VOC_ROOT +'/JPEGImages'
fn= VOC_ROOT +'/ImageSets/Segmentation/val.txt'
f = open(fn,'r'); image_ids = f.read().splitlines(); f.close()
self.image_ids=image_ids
def load_test(self):
image_dir = VOC_ROOT +'/JPEGImages'
fn=VOC_ROOT +'/ImageSets/Segmentation/test.txt'
f = open(fn,'r');image_ids = f.read().splitlines(); f.close()
self.image_ids=image_ids
############################################################
# main
############################################################
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('--mode', required=True,
default=0,
metavar="<0-3>",
help='mode',
type=int)
parser.add_argument('--bn', required=False,
default=2,
metavar="<batchsize>",
type=int)
parser.add_argument('--modelid', required=False,
default='default',
metavar="<modelid>",
help='An id for saving and loading ',
type=str)
args = parser.parse_args()
def create_model(config, modellib, modeln, weight_file=None):
model_factory = modellib.__dict__[modeln]
model_params = dict(config=config, weight_file=weight_file)
model = model_factory(**model_params)
return model
config = Config()
config.VOC_ROOT=VOC_ROOT
runner_name = os.path.basename(__file__).split(".")[0]
if args.mode==0:
print("Train the ssdd module for the difference between PSA and PSA with CRF")
dataset_train=PascalDataset()
dataset_train.load()
weight_file='pretrained_models/res38_cls.pth'
models=create_model(config, train_sssdd, 'models', weight_file)
model_trainer=train_sssdd.Trainer(config=config, model_dir=DEFAULT_LOGS_DIR, model=models)
model_trainer.config.BATCH=torch.cuda.device_count()*args.bn
model_trainer.config.EPOCHS=16
model_trainer.config.modelid=args.modelid
model_trainer.set_log_dir('sssdd', args.modelid)
model_trainer.train_model(
dataset_train,
)
elif args.mode==1:
print("Precompute the prediction of the difference between PSA and PSA with CRF")
dataset_train=PascalDataset()
dataset_train.load()
weight_file_seg='./logs/sssdd_default/models/seg_0010.pth'
weight_file_ssdd='./logs/sssdd_default/models/ssdd_0010.pth'
#weight_file_seg='sssdd_seg.pth'
#weight_file_ssdd='sssdd_ssdd.pth'
models=create_model(config, precompute_sssdd, 'models')
model_precompute=precompute_sssdd.Precompute(config=config, model_dir=DEFAULT_LOGS_DIR, model=models, weight_files=(weight_file_seg, weight_file_ssdd))
model_precompute.config.BATCH=torch.cuda.device_count()*args.bn
model_precompute.config.modelid=args.modelid
model_precompute.set_log_dir('precompute', args.modelid)
model_precompute.precompute_model(
dataset_train,
)
elif args.mode==2:
print("Train the two ssdd modules and the segmentation model")
dataset_train=PascalDataset()
dataset_train.load()
weight_file='pretrained_models/res38_cls.pth'
models=create_model(config, train_dssdd, 'models', weight_file)
config.BATCH=torch.cuda.device_count()*args.bn
config.EPOCHS=41
config.modelid=args.modelid
model_trainer=train_dssdd.Trainer(config=config, model_dir=DEFAULT_LOGS_DIR, model=models)
model_trainer.set_log_dir('dssdd', args.modelid)
model_trainer.train_model(
dataset_train,
)
elif args.mode==3:
print("Validation")
dataset_val=PascalDataset()
dataset_val.load_val()
#weight_file='./segmodel_64pt9_val.pth'
#weight_file='./logs/dssdd_default/models/seg_0030.pth'
weight_file='dssdd_seg.pth'
model=create_model(config, val, 'val')
model=nn.DataParallel(model).cuda()
state_dict = torch.load(weight_file)
model.load_state_dict(state_dict,strict=False)
model_evaluator=val.Evaluator(config=config, model=model)
model_evaluator.config.BATCH=torch.cuda.device_count()*args.bn
model_evaluator.config.modelid=args.modelid
model_evaluator.set_log_dir('val', args.modelid)
model_evaluator.eval_model(
dataset_val,
)