-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathreader.py
298 lines (251 loc) · 12.1 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
import logging
import io
import json
import numpy as np
from collections import namedtuple, Counter
from setup import WordEmbData, read_word_emb_data, tokenize_tst_json
#######################################
# Types:
#######################################
SquadData = namedtuple('SquadData', [
'word_emb_data', # WordEmbData
'trn', # SquadDataset
'dev', # SquadDataset
'tst' # SquadDataset
])
SquadDataset = namedtuple('SquadDataset', [
'tabular', # SquadDatasetTabular
'vectorized' # SquadDatasetVectorized
])
SquadDatasetVectorized = namedtuple('SquadDatasetVectorized', [
'ctxs', # int32 (num contexts, max context length)
'ctx_lens', # int32 (num contexts,)
'qtns', # int32 (num questions, max question length)
'qtn_lens', # int32 (num questions,)
'qtn_ctx_idxs', # int32 (num questions,) index of context of question
'qtn_ans_inds', # int32 (num questions,) indicator of whether question has a valid answer
'anss' # int32 (num questions, 2) we keep only first valid answer as (answer start word idx,
# answer end word idx), undefined for all invalid
])
TokenizedText = namedtuple('TokenizedText', [
'text', # original text string
'tokens', # list of parsed tokens
'originals', # list of original tokens (may differ from parsed ones)
'whitespace_afters', # list of whitespace strings, each appears after corresponding original token in original text
])
SquadArticle = namedtuple('SquadArticle', [
'art_title_str'
])
SquadContext = namedtuple('SquadContext', [
'art_idx',
'tokenized' # TokenizedText of context's text
])
SquadQuestion = namedtuple('SquadQuestion', [
'ctx_idx',
'qtn_id',
'tokenized', # TokenizedText of question's text
'ans_texts', # list of (possibly multiple) answer text strings
'ans_word_idxs' # list where each entry is either a (answer start word index, answer end word index) tuple
# or None for answers that we failed to parse
])
class SquadDatasetTabular(object):
def __init__(self):
self.arts = [] # SquadArticle objects
self.ctxs = [] # SquadContext objects
self.qtns = [] # SquadQuestion objects
def new_article(self, art_title_str):
self.arts.append(SquadArticle(art_title_str))
return len(self.arts) - 1
def new_context(self, art_idx, ctx_tokenized):
self.ctxs.append(SquadContext(art_idx, ctx_tokenized))
return len(self.ctxs) - 1
def new_question(self, ctx_idx, qtn_id, qtn_tokenized, ans_texts, ans_word_idxs):
self.qtns.append(
SquadQuestion(ctx_idx, qtn_id, qtn_tokenized, ans_texts, ans_word_idxs))
#######################################
# Functionality:
#######################################
def get_data(config, train):
word_emb_data = read_word_emb_data(config.word_emb_data_path_prefix)
word_strs = set()
if train:
trn_tab_ds = _make_tabular_dataset(
config.tokenized_trn_json_path, word_strs, has_answers=True, max_ans_len=config.max_ans_len)
dev_tab_ds = _make_tabular_dataset(
config.tokenized_dev_json_path, word_strs, has_answers=True, max_ans_len=config.max_ans_len)
word_emb_data = _contract_word_emb_data(word_emb_data, word_strs, config.learn_single_unk)
trn_vec_ds = _make_vectorized_dataset('train', trn_tab_ds, word_emb_data)
dev_vec_ds = _make_vectorized_dataset('dev', dev_tab_ds, word_emb_data)
trn_ds = SquadDataset(trn_tab_ds, trn_vec_ds)
dev_ds = SquadDataset(dev_tab_ds, dev_vec_ds)
return SquadData(word_emb_data, trn_ds, dev_ds, None)
else:
tokenized_test_json_path = config.test_json_path + '.tokenized.tmp'
tokenize_tst_json(config.test_json_path, tokenized_test_json_path, config.tst_split)
tst_tab_ds = _make_tabular_dataset(
tokenized_test_json_path, word_strs, has_answers=False, max_ans_len=config.max_ans_len)
word_emb_data = _contract_word_emb_data(word_emb_data, word_strs, config.learn_single_unk)
tst_vec_ds = _make_vectorized_dataset('test', tst_tab_ds, word_emb_data)
tst_ds = SquadDataset(tst_tab_ds, tst_vec_ds)
return SquadData(word_emb_data, None, None, tst_ds)
def construct_answer_hat(ctx, ans_hat_start_word_idx, ans_hat_end_word_idx):
ctx_originals = ctx.tokenized.originals
ctx_whitespace_afters = ctx.tokenized.whitespace_afters
ans_hat_str = ''
for word_idx in range(ans_hat_start_word_idx, ans_hat_end_word_idx+1):
ans_hat_str += ctx_originals[word_idx]
if word_idx < ans_hat_end_word_idx:
ans_hat_str += ctx_whitespace_afters[word_idx]
return ans_hat_str
def write_test_predictions(ans_hats, pred_json_path):
logger = logging.getLogger()
s = json.dumps(ans_hats, ensure_ascii=False)
with io.open(pred_json_path, 'w', encoding='utf-8') as f:
f.write(s)
logger.info('Written test predictions to {}'.format(pred_json_path))
def _make_tabular_dataset(tokenized_json_path, word_strs, has_answers, max_ans_len=None):
logger = logging.getLogger()
tabular = SquadDatasetTabular()
num_questions = 0
num_answers = 0
num_invalid_answers = 0
num_long_answers = 0
num_invalid_questions = 0
answers_per_question_counter = Counter()
with io.open(tokenized_json_path, 'r', encoding='utf-8') as f:
j = json.load(f)
#version = j['version']
data = j['data']
for article in data:
art_title_str = article['title']
art_idx = tabular.new_article(art_title_str)
paragraphs = article['paragraphs']
for paragraph in paragraphs:
ctx_str = paragraph['context']
ctx_tokens = paragraph['tokens']
word_strs.update(ctx_tokens)
ctx_originals = paragraph['originals']
ctx_whitespace_afters = paragraph['whitespace_afters']
ctx_tokenized = TokenizedText(ctx_str, ctx_tokens, ctx_originals, ctx_whitespace_afters)
ctx_idx = tabular.new_context(art_idx, ctx_tokenized)
qas = paragraph['qas']
for qa in qas:
num_questions += 1
qtn_id = qa['id']
qtn_str = qa['question']
qtn_tokens = qa['tokens']
word_strs.update(qtn_tokens)
qtn_originals = qa['originals']
qtn_whitespace_afters = qa['whitespace_afters']
qtn_tokenized = TokenizedText(qtn_str, qtn_tokens, qtn_originals, qtn_whitespace_afters)
ans_texts = []
ans_word_idxs = []
if has_answers:
answers = qa['answers']
assert answers
for answer in answers:
num_answers += 1
ans_text = answer['text']
assert ans_text
ans_texts.append(ans_text)
if not answer['valid']:
ans_word_idxs.append(None)
num_invalid_answers += 1
continue
ans_start_word_idx = answer['start_token_idx']
ans_end_word_idx = answer['end_token_idx']
if max_ans_len and ans_end_word_idx - ans_start_word_idx + 1 > max_ans_len:
ans_word_idxs.append(None)
num_long_answers += 1
else:
ans_word_idxs.append((ans_start_word_idx, ans_end_word_idx))
answers_per_question_counter[len(ans_texts)] += 1 # this counts also invalid answers
num_invalid_questions += 1 if all(ans is None for ans in ans_word_idxs) else 0
tabular.new_question(ctx_idx, qtn_id, qtn_tokenized, ans_texts, ans_word_idxs)
logger.info('Processed {:s}:\n'
'\ttotal {:d} questions, {:d} invalid questions, '
'total {:d} answers, {:d} invalid answers, {:d} too long answers\n'
'\t{{x: num of questions having x answers}}: {{{:s}}}'.format(
tokenized_json_path,
num_questions, num_invalid_questions,
num_answers, num_invalid_answers, num_long_answers,
', '.join('{:d}: {:d}'.format(x, num_x) for x, num_x in sorted(answers_per_question_counter.iteritems()))))
return tabular
def _contract_word_emb_data(old_word_emb_data, word_strs, is_single_unk):
logger = logging.getLogger()
old_word_emb, old_str_to_word, old_first_known_word, old_first_unknown_word, old_first_unallocated_word = \
old_word_emb_data
known_word_strs = []
unknown_word_strs = []
for word_str in word_strs:
if word_str in old_str_to_word and old_str_to_word[word_str] < old_first_unknown_word:
known_word_strs.append(word_str)
else:
unknown_word_strs.append(word_str)
str_to_word = {}
emb_size = old_first_known_word + (len(known_word_strs)+1 if is_single_unk else len(word_strs))
word_emb = np.zeros((emb_size, old_word_emb.shape[1]), dtype=np.float32)
for i, word_str in enumerate(known_word_strs):
word = old_first_known_word + i
str_to_word[word_str] = word
word_emb[word, :] = old_word_emb[old_str_to_word[word_str]]
first_unknown_word = old_first_known_word + len(known_word_strs)
if is_single_unk:
for word_str in unknown_word_strs:
str_to_word[word_str] = first_unknown_word
logger.info('Contracted word embeddings (single embedding for unknown word-types): '
'{} known word-types, {} unknown word-types'.format(len(known_word_strs), len(unknown_word_strs)))
else:
num_new_unks = 0
for i, word_str in enumerate(unknown_word_strs):
word = first_unknown_word + i
str_to_word[word_str] = word
if word_str in old_str_to_word:
word_emb[word, :] = old_word_emb[old_str_to_word[word_str]]
else:
if old_first_unallocated_word + num_new_unks >= len(old_word_emb):
logger.info('Error: too many unknown words, can increase number of alloted random embeddings in setup.py')
sys.exit(1)
word_emb[word, :] = old_word_emb[old_first_unallocated_word + num_new_unks]
num_new_unks += 1
logger.info('Contracted word embeddings (multiple embeddings for unknown word-types):\n'
'\t{} known word-types, {} pre-existing unknown word-types, {} new unknown word-types'.format(
len(known_word_strs), len(unknown_word_strs) - num_new_unks, num_new_unks))
return WordEmbData(
word_emb, str_to_word, old_first_known_word, first_unknown_word, None)
def _make_vectorized_dataset(name, tabular, word_emb_data):
num_ctxs = len(tabular.ctxs)
num_qtns = len(tabular.qtns)
max_ctx_len = max(len(ctx.tokenized.tokens) for ctx in tabular.ctxs)
max_qtn_len = max(len(qtn.tokenized.tokens) for qtn in tabular.qtns)
ctxs = np.zeros((num_ctxs, max_ctx_len), dtype=np.int32)
ctx_lens = np.zeros(num_ctxs, dtype=np.int32)
qtns = np.zeros((num_qtns, max_qtn_len), dtype=np.int32)
qtn_lens = np.zeros(num_qtns, dtype=np.int32)
qtn_ctx_idxs = np.zeros(num_qtns, dtype=np.int32)
qtn_ans_inds = np.zeros(num_qtns, dtype=np.int32)
anss = np.zeros((num_qtns, 2), dtype=np.int32)
for ctx_idx, ctx in enumerate(tabular.ctxs):
ctx_words = [word_emb_data.str_to_word[word_str] for word_str in ctx.tokenized.tokens]
ctxs[ctx_idx, :len(ctx_words)] = ctx_words
ctx_lens[ctx_idx] = len(ctx_words)
for qtn_idx, qtn in enumerate(tabular.qtns):
qtn_words = [word_emb_data.str_to_word[word_str] for word_str in qtn.tokenized.tokens]
qtns[qtn_idx, :len(qtn_words)] = qtn_words
qtn_lens[qtn_idx] = len(qtn_words)
qtn_ctx_idxs[qtn_idx] = qtn.ctx_idx
ans = next((ans for ans in qtn.ans_word_idxs if ans), None) if qtn.ans_word_idxs else None
if ans:
ans_start_word_idx, ans_end_word_idx = ans
anss[qtn_idx] = [ans_start_word_idx, ans_end_word_idx]
qtn_ans_inds[qtn_idx] = 1
else:
qtn_ans_inds[qtn_idx] = 0
qs = [1., 2., 5.] + list(np.arange(10., 91., 10.)) + [95., 99., 100.]
msg = 'Vectorized {} samples. Lengths:\n'.format(name) + '\n'.join([
'\t{:<15s}{:s}'.format('percentile:', ''.join(['%-5d' % q for q in qs])),
'\t{:<15s}{:s}'.format('ctx length:', ''.join(['%-5d' % ctx_p for ctx_p in np.percentile(ctx_lens, qs)])),
'\t{:<15s}{:s}'.format('qtn length:', ''.join(['%-5d' % qtn_p for qtn_p in np.percentile(qtn_lens, qs)]))])
logging.getLogger().info(msg)
return SquadDatasetVectorized(ctxs, ctx_lens, qtns, qtn_lens, qtn_ctx_idxs, qtn_ans_inds, anss)