-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_rdl.py
477 lines (416 loc) · 23 KB
/
train_rdl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import time
import argparse
import json
import math
import numpy as np
import torch
import nvdiffrast.torch as dr
# Import data readers / generators
from dataset.dataset_item3d import DatasetItem3D
from dataset.dataset_item3d import get_camera_params
# Import topology / geometry trainers
from geometry.dlmesh import DLMesh
from render import obj
from render import util
from render import mesh
from render import light
from stable_diffusion.sd_util import StableDiffusion
from tqdm import tqdm
import torchvision.transforms as transforms
from render import util
from render.video import Video
import random
import imageio
import os.path as osp
from render_utils import initial_guess_material, xatlas_uvmap, save_uvmap, get_normalize_mesh
@torch.no_grad()
def prepare_batch(target, background= 'black'):
target['mv'] = target['mv'].cuda()
target['mvp'] = target['mvp'].cuda()
target['campos'] = target['campos'].cuda()
target['normal_rotate'] = target['normal_rotate'].cuda()
# target['prompt_index'] = target['prompt_index'].cuda()
batch_size = target['mv'].shape[0]
resolution = target['resolution']
if background == 'white':
target['background']= torch.ones(batch_size, resolution[0], resolution[1], 3, dtype=torch.float32, device='cuda')
if background == 'black':
target['background'] = torch.zeros(batch_size, resolution[0], resolution[1], 3, dtype=torch.float32, device='cuda')
return target
@torch.no_grad()
def validate_itr(glctx, target, geometry, opt_material, lgt, FLAGS, relight = None):
result_dict = {}
with torch.no_grad():
with torch.no_grad():
lgt.build_mips()
if FLAGS.camera_space_light:
lgt.xfm(target['mv'])
if relight != None:
relight.build_mips()
buffers = geometry.render(glctx, target, lgt, opt_material)
result_dict['shaded'] = buffers['shaded'][0, ..., 0:3]
result_dict['shaded'] = util.rgb_to_srgb(result_dict['shaded'])
if relight != None:
result_dict['relight'] = geometry.render(glctx, target, relight, opt_material)['shaded'][0, ..., 0:3]
result_dict['relight'] = util.rgb_to_srgb(result_dict['relight'])
result_dict['mask'] = (buffers['shaded'][0, ..., 3:4])
result_image = result_dict['shaded']
if FLAGS.display is not None :
# white_bg = torch.ones_like(target['background'])
for layer in FLAGS.display:
if 'latlong' in layer and layer['latlong']:
if isinstance(lgt, light.EnvironmentLight):
result_dict['light_image'] = util.cubemap_to_latlong(lgt.base, FLAGS.display_res)
result_image = torch.cat([result_image, result_dict['light_image']], axis=1)
elif 'bsdf' in layer:
buffers = geometry.render(glctx, target, lgt, opt_material, bsdf=layer['bsdf'])
if layer['bsdf'] == 'kd':
result_dict[layer['bsdf']] = util.rgb_to_srgb(buffers['shaded'][0, ..., 0:3])
elif layer['bsdf'] == 'normal':
result_dict[layer['bsdf']] = (buffers['shaded'][0, ..., 0:3] + 1) * 0.5
else:
result_dict[layer['bsdf']] = buffers['shaded'][0, ..., 0:3]
result_image = torch.cat([result_image, result_dict[layer['bsdf']]], axis=1)
return result_image, result_dict
def save_gif(dir,fps):
imgpath = dir
frames = []
for idx in sorted(os.listdir(imgpath)):
# print(idx)
img = osp.join(imgpath,idx)
frames.append(imageio.v2.imread(img))
imageio.mimsave(os.path.join(dir, 'eval.gif'),frames,'GIF',duration=1/fps)
@torch.no_grad()
def validate(glctx, geometry, opt_material, lgt, dataset_validate, out_dir, FLAGS, relight= None):
dataloader_validate = torch.utils.data.DataLoader(dataset_validate, batch_size=1, collate_fn=dataset_validate.collate)
os.makedirs(out_dir, exist_ok=True)
shaded_dir = os.path.join(out_dir, "shaded")
relight_dir = os.path.join(out_dir, "relight")
kd_dir = os.path.join(out_dir, "kd")
ks_dir = os.path.join(out_dir, "ks")
normal_dir = os.path.join(out_dir, "normal")
mask_dir = os.path.join(out_dir, "mask")
os.makedirs(shaded_dir, exist_ok=True)
os.makedirs(relight_dir, exist_ok=True)
os.makedirs(kd_dir, exist_ok=True)
os.makedirs(ks_dir, exist_ok=True)
os.makedirs(normal_dir, exist_ok=True)
os.makedirs(mask_dir, exist_ok=True)
print("Running validation")
dataloader_validate = tqdm(dataloader_validate)
for it, target in enumerate(dataloader_validate):
# Mix validation background
target = prepare_batch(target, 'white')
result_image, result_dict = validate_itr(glctx, target, geometry, opt_material, lgt, FLAGS, relight)
for k in result_dict.keys():
np_img = result_dict[k].detach().cpu().numpy()
if k == 'shaded':
util.save_image(shaded_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'relight':
util.save_image(relight_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'kd':
util.save_image(kd_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'ks':
util.save_image(ks_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'normal':
util.save_image(normal_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
elif k == 'mask':
util.save_image(mask_dir + '/' + ('val_%06d_%s.png' % (it, k)), np_img)
return 0
class Trainer(torch.nn.Module):
def __init__(self, glctx, geometry, lgt, mat, optimize_geometry, optimize_light, FLAGS, guidance):
super(Trainer, self).__init__()
self.glctx = glctx
self.geometry = geometry
self.light = lgt
self.material = mat
self.optimize_geometry = optimize_geometry
self.optimize_light = optimize_light
self.FLAGS = FLAGS
self.guidance = guidance
self.if_flip_the_normal = FLAGS.if_flip_the_normal
self.if_use_bump = FLAGS.if_use_bump
if not self.optimize_light:
with torch.no_grad():
self.light.build_mips()
self.params = list(self.material.parameters())
self.params += list(self.light.parameters()) if optimize_light else []
self.geo_params = list(self.geometry.parameters()) if optimize_geometry else []
def forward(self, target, it):
if self.optimize_light:
self.light.build_mips()
if self.FLAGS.camera_space_light:
self.light.xfm(target['mv'])
return self.geometry.tick_dds(glctx, target, self.light, self.material, it , self.guidance)
def optimize_mesh(
glctx,
geometry,
opt_material,
lgt,
dataset_train,
dataset_validate,
FLAGS,
log_interval=10,
optimize_light=True,
optimize_geometry=True,
guidance = None
):
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=FLAGS.batch, collate_fn=dataset_train.collate, shuffle=False)
dataloader_validate = torch.utils.data.DataLoader(dataset_validate, batch_size=1, collate_fn=dataset_train.collate)
model = Trainer(glctx, geometry, lgt, opt_material, optimize_geometry, optimize_light, FLAGS, guidance)
if optimize_geometry:
optimizer_mesh = torch.optim.AdamW(model.geo_params, lr=0.001, betas=(0.9, 0.99), eps=1e-15)
optimizer = torch.optim.AdamW(model.params, lr=0.01, betas=(0.9, 0.99), eps=1e-15)
if FLAGS.multi_gpu:
model = model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[FLAGS.local_rank], find_unused_parameters=True)
img_cnt = 0
sds_loss_vec = []
reg_loss_vec = []
iter_dur_vec = []
def cycle(iterable):
iterator = iter(iterable)
while True:
try:
yield next(iterator)
except StopIteration:
iterator = iter(iterable)
v_it = cycle(dataloader_validate)
scaler = torch.cuda.amp.GradScaler(enabled=True)
rot_ang = 0
if FLAGS.local_rank == 0:
video = Video(FLAGS.out_dir)
if FLAGS.local_rank == 0:
dataloader_train = tqdm(dataloader_train)
for it, target in enumerate(dataloader_train):
# Mix randomized background into dataset image
target = prepare_batch(target, FLAGS.train_background)
# ==============================================================================================
# Display / save outputs. Do it before training so we get initial meshes
# ==============================================================================================
# Show/save image before training step (want to get correct rendering of input)
if FLAGS.local_rank == 0:
save_image = FLAGS.save_interval and (it % FLAGS.save_interval == 0)
save_video = FLAGS.video_interval and (it % FLAGS.video_interval == 0)
if save_image:
result_image, result_dict = validate_itr(glctx, prepare_batch(next(v_it), FLAGS.train_background), geometry, opt_material, lgt, FLAGS) #prepare_batch(next(v_it), FLAGS.background)
np_result_image = result_image.detach().cpu().numpy()
util.save_image(FLAGS.out_dir + '/' + ('img_%06d.png' % (img_cnt)), np_result_image)
img_cnt = img_cnt+1
if save_video:
with torch.no_grad():
params = get_camera_params(
resolution=512,
fov=45,
elev_angle=-20,
azim_angle =rot_ang,
)
rot_ang += 1
buffers = geometry.render(glctx, params, lgt, opt_material, bsdf='pbr')
video_image = util.rgb_to_srgb(buffers['shaded'][0, ..., 0:3])
video_image = video.ready_image(video_image)
iter_start_time = time.time()
with torch.cuda.amp.autocast(enabled= True):
sds_loss, reg_loss = model(target, it)
# ==============================================================================================
# Final loss
# ==============================================================================================
total_loss = reg_loss + sds_loss
scaler.scale(total_loss).backward()
sds_loss_vec.append(sds_loss.item())
reg_loss_vec.append(reg_loss.item())
# ==============================================================================================
# Backpropagate
# ==============================================================================================
scaler.step(optimizer)
optimizer.zero_grad()
if optimize_geometry:
scaler.step(optimizer_mesh)
# scheduler_mesh.step()
optimizer_mesh.zero_grad()
scaler.update()
# ==============================================================================================
# Clamp trainables to reasonable range
# ==============================================================================================
with torch.no_grad():
if 'kd' in opt_material:
opt_material['kd'].clamp_()
if 'ks' in opt_material:
opt_material['ks'].clamp_()
if 'normal' in opt_material:
opt_material['normal'].clamp_()
opt_material['normal'].normalize_()
if lgt is not None:
lgt.clamp_(min=0.0)
torch.cuda.current_stream().synchronize()
iter_dur_vec.append(time.time() - iter_start_time)
return geometry, opt_material
def seed_everything(seed, local_rank):
random.seed(seed + local_rank)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed + local_rank)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='nvdiffrec')
parser.add_argument('--config', type=str, default=None, help='Config file')
parser.add_argument('-i', '--iter', type=int, default=5000)
parser.add_argument('-b', '--batch', type=int, default=1)
parser.add_argument('-s', '--spp', type=int, default=1)
parser.add_argument('-l', '--layers', type=int, default=1)
parser.add_argument('-r', '--train-res', nargs=2, type=int, default=[512, 512])
parser.add_argument('-dr', '--display-res', type=int, default=None)
parser.add_argument('-tr', '--texture-res', nargs=2, type=int, default=[1024, 1024])
parser.add_argument('-si', '--save-interval', type=int, default=1000, help="The interval of saving an image")
parser.add_argument('-vi', '--video_interval', type=int, default=10, help="The interval of saving a frame of the video")
parser.add_argument('-mr', '--min-roughness', type=float, default=0.08)
parser.add_argument('-mip', '--custom-mip', action='store_true', default=False)
parser.add_argument('-rt', '--random-textures', action='store_true', default=False)
parser.add_argument('-bg', '--train_background', default='black', choices=['black', 'white', 'checker', 'reference'])
parser.add_argument('-o', '--out-dir', type=str, default=None)
parser.add_argument('-rm', '--ref_mesh', type=str)
parser.add_argument('-bm', '--base-mesh', type=str, default=None)
parser.add_argument('--validate', type=bool, default=True)
parser.add_argument("--local_rank", type=int, default=0, help="For distributed training: local_rank")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument("--add_directional_text", action='store_true', default=False)
parser.add_argument('--text', type=str, default="", help="text prompt")
parser.add_argument('--ori_text', type=str, default="", help="origin text prompt")
parser.add_argument('--camera_random_jitter', type= float, default=0.4, help="A large value is advantageous for the extension of objects such as ears or sharp corners to grow.")
parser.add_argument('--fovy_range', nargs=2, type=float, default=[25.71, 45.00])
parser.add_argument('--elevation_range', nargs=2, type=int, default=[-10, 45], help="The elevatioin range must in [-90, 90].")
parser.add_argument("--guidance_weight", type=int, default=100, help="The weight of classifier-free guidance")
parser.add_argument("--translation_y", type= float, nargs=1, default= 0 , help="translation of the initial shape on the y-axis")
parser.add_argument("--translation_z", type= float, nargs=1, default= 0 , help="translation of the initial shape on the z-axis")
parser.add_argument("--coarse_iter", type= int, nargs=1, default= 1000 , help="The iteration number of the coarse stage.")
parser.add_argument('--early_time_step_range', nargs=2, type=float, default=[0.02, 0.5], help="The time step range in early phase")
parser.add_argument('--late_time_step_range', nargs=2, type=float, default=[0.02, 0.5], help="The time step range in late phase")
parser.add_argument("--if_flip_the_normal", action='store_true', default=False , help="Flip the x-axis positive half-axis of Normal. We find this process helps to alleviate the Janus problem.")
parser.add_argument("--front_threshold", type= int, nargs=1, default= 45 , help="the range of front view would be [-front_threshold, front_threshold")
parser.add_argument("--if_use_bump", type=bool, default= True , help="whether to use perturbed normals during appearing modeling")
parser.add_argument("--uv_padding_block", type= int, default= 4 , help="The block of uv padding.")
parser.add_argument("--negative_text", type=str, default="", help="adding negative text can improve the visual quality in appearance modeling")
FLAGS = parser.parse_args()
FLAGS.mtl_override = None # Override material of model
FLAGS.dmtet_grid = 64 # Resolution of initial tet grid. We provide 64, 128 and 256 resolution grids. Other resolutions can be generated with https://github.com/crawforddoran/quartet
FLAGS.mesh_scale = 2.1 # Scale of tet grid box. Adjust to cover the model
FLAGS.env_scale = 1.0 # Env map intensity multiplier
FLAGS.envmap = None # HDR environment probe
FLAGS.relight = None # HDR environment probe(relight)
FLAGS.display = None # Conf validation window/display. E.g. [{"relight" : <path to envlight>}]
FLAGS.camera_space_light = False # Fixed light in camera space. This is needed for setups like ethiopian head where the scanned object rotates on a stand.
FLAGS.lock_light = False # Disable light optimization in the second pass
FLAGS.lock_pos = False # Disable vertex position optimization in the second pass
FLAGS.pre_load = True # Pre-load entire dataset into memory for faster training
FLAGS.kd_min = [ 0.0, 0.0, 0.0, 0.0] # Limits for kd
FLAGS.kd_max = [ 1.0, 1.0, 1.0, 1.0]
FLAGS.ks_min = [ 0.0, 0.08, 0.0] # Limits for ks
FLAGS.ks_max = [ 1.0, 1.0, 1.0]
FLAGS.nrm_min = [-1.0, -1.0, 0.0] # Limits for normal map
FLAGS.nrm_max = [ 1.0, 1.0, 1.0]
FLAGS.cam_near_far = [1, 50]
FLAGS.learn_light = False
FLAGS.gpu_number = 1
# FLAGS.local_rank = 0
FLAGS.multi_gpu = "WORLD_SIZE" in os.environ and int(os.environ["WORLD_SIZE"]) > 1
if FLAGS.multi_gpu:
FLAGS.gpu_number = int(os.environ["WORLD_SIZE"])
FLAGS.local_rank = int(os.environ["LOCAL_RANK"])
torch.distributed.init_process_group(backend="nccl", world_size = FLAGS.gpu_number, rank = FLAGS.local_rank)
torch.cuda.set_device(FLAGS.local_rank)
if FLAGS.config is not None:
data = json.load(open(FLAGS.config, 'r'))
for key in data:
FLAGS.__dict__[key] = data[key]
if FLAGS.display_res is None:
FLAGS.display_res = FLAGS.train_res
if FLAGS.out_dir is None:
FLAGS.out_dir = 'out/cube_%d' % (FLAGS.train_res)
else:
FLAGS.out_dir = 'out/' + FLAGS.out_dir
if FLAGS.local_rank == 0:
print("Config / Flags:")
print("---------")
for key in FLAGS.__dict__.keys():
print(key, FLAGS.__dict__[key])
print("---------")
seed_everything(FLAGS.seed, FLAGS.local_rank)
os.makedirs(FLAGS.out_dir, exist_ok=True)
# glctx = dr.RasterizeGLContext()
glctx = dr.RasterizeCudaContext()
# ==============================================================================================
# Create data pipeline
# ==============================================================================================
dataset_train = DatasetItem3D(glctx, FLAGS, validate=False)
dataset_validate = DatasetItem3D(glctx, FLAGS, validate=True)
dataset_gif = DatasetItem3D(glctx, FLAGS, gif=True)
# ==============================================================================================
# Create env light with trainable parameters
# ==============================================================================================
if FLAGS.learn_light:
lgt = light.create_trainable_env_rnd(512, scale=0.0, bias=1)
else:
lgt = light.load_env(FLAGS.envmap, scale=FLAGS.env_scale)
guidance = StableDiffusion(device = 'cuda',
text = FLAGS.text,
ori_text= FLAGS.ori_text,
add_directional_text = FLAGS.add_directional_text,
batch = FLAGS.batch,
guidance_weight = FLAGS.guidance_weight,
sds_weight_strategy = FLAGS.sds_weight_strategy,
early_time_step_range = FLAGS.early_time_step_range,
late_time_step_range= FLAGS.late_time_step_range,
negative_text = FLAGS.negative_text)
guidance.eval()
for p in guidance.parameters():
p.requires_grad_(False)
if FLAGS.base_mesh is None:
assert False, "[Error] The path of custom mesh is invalid ! (appearance modeling)"
# Load initial guess mesh from file
base_mesh = mesh.load_mesh(FLAGS.base_mesh)
geometry = DLMesh(base_mesh, FLAGS)
# mat = initial_guess_material(geometry, False, FLAGS, init_mat=base_mesh.material)
mat = initial_guess_material(geometry, True, FLAGS)
geometry, mat = optimize_mesh(glctx,
geometry,
mat,
lgt,
dataset_train,
dataset_validate,
FLAGS,
optimize_light=FLAGS.learn_light,
optimize_geometry= False,
guidance= guidance,
)
# ==============================================================================================
# Validate
# ==============================================================================================
if FLAGS.validate and FLAGS.local_rank == 0:
if FLAGS.relight != None:
relight = light.load_env(FLAGS.relight, scale=FLAGS.env_scale)
else:
relight = None
validate(glctx, geometry, mat, lgt, dataset_validate, os.path.join(FLAGS.out_dir, "validate"), FLAGS, relight)
if FLAGS.local_rank == 0:
if 'kd_ks_normal' in mat.keys():
base_mesh = save_uvmap(glctx, geometry, mat, FLAGS)
else:
base_mesh = geometry.getMesh(mat)
torch.cuda.empty_cache()
if 'kd_ks_normal' in mat.keys():
mat['kd_ks_normal'].cleanup()
del mat['kd_ks_normal']
lgt = lgt.clone()
if FLAGS.local_rank == 0:
os.makedirs(os.path.join(FLAGS.out_dir, "dmtet_mesh"), exist_ok=True)
obj.write_obj(os.path.join(FLAGS.out_dir, "dmtet_mesh/"), base_mesh)
light.save_env_map(os.path.join(FLAGS.out_dir, "dmtet_mesh/probe.hdr"), lgt)