forked from JmlrOrg/jmlr-style-file
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample.tex
128 lines (93 loc) · 3.91 KB
/
sample.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
\documentclass[twoside,11pt]{article}
\usepackage{blindtext}
% Any additional packages needed should be included after jmlr2e.
% Note that jmlr2e.sty includes epsfig, amssymb, natbib and graphicx,
% and defines many common macros, such as 'proof' and 'example'.
%
% It also sets the bibliographystyle to plainnat; for more information on
% natbib citation styles, see the natbib documentation, a copy of which
% is archived at http://www.jmlr.org/format/natbib.pdf
% Available options for package jmlr2e are:
%
% - abbrvbib : use abbrvnat for the bibliography style
% - nohyperref : do not load the hyperref package
% - preprint : remove JMLR specific information from the template,
% useful for example for posting to preprint servers.
%
% Example of using the package with custom options:
%
% \usepackage[abbrvbib, preprint]{jmlr2e}
\usepackage{jmlr2e}
% Definitions of handy macros can go here
\newcommand{\dataset}{{\cal D}}
\newcommand{\fracpartial}[2]{\frac{\partial #1}{\partial #2}}
% Heading arguments are {volume}{year}{pages}{date submitted}{date published}{paper id}{author-full-names}
\usepackage{lastpage}
\jmlrheading{23}{2022}{1-\pageref{LastPage}}{1/21; Revised 5/22}{9/22}{21-0000}{Author One and Author Two}
% Short headings should be running head and authors last names
\ShortHeadings{Sample JMLR Paper}{One and Two}
\firstpageno{1}
\begin{document}
\title{Sample JMLR Paper}
\author{\name Author One \email [email protected] \\
\addr Department of Statistics\\
University of Washington\\
Seattle, WA 98195-4322, USA
\AND
\name Author Two \email [email protected] \\
\addr Division of Computer Science\\
University of California\\
Berkeley, CA 94720-1776, USA}
\editor{My editor}
\maketitle
\begin{abstract}% <- trailing '%' for backward compatibility of .sty file
\blindtext
\end{abstract}
\begin{keywords}
keyword one, keyword two, keyword three
\end{keywords}
\section{Introduction}
\blindmathpaper
Here is a citation \cite{chow:68}.
% Acknowledgements and Disclosure of Funding should go at the end, before appendices and references
\acks{All acknowledgements go at the end of the paper before appendices and references.
Moreover, you are required to declare funding (financial activities supporting the
submitted work) and competing interests (related financial activities outside the submitted work).
More information about this disclosure can be found on the JMLR website.}
% Manual newpage inserted to improve layout of sample file - not
% needed in general before appendices/bibliography.
\newpage
\appendix
\section{}
\label{app:theorem}
% Note: in this sample, the section number is hard-coded in. Following
% proper LaTeX conventions, it should properly be coded as a reference:
%In this appendix we prove the following theorem from
%Section~\ref{sec:textree-generalization}:
In this appendix we prove the following theorem from
Section~6.2:
\noindent
{\bf Theorem} {\it Let $u,v,w$ be discrete variables such that $v, w$ do
not co-occur with $u$ (i.e., $u\neq0\;\Rightarrow \;v=w=0$ in a given
dataset $\dataset$). Let $N_{v0},N_{w0}$ be the number of data points for
which $v=0, w=0$ respectively, and let $I_{uv},I_{uw}$ be the
respective empirical mutual information values based on the sample
$\dataset$. Then
\[
N_{v0} \;>\; N_{w0}\;\;\Rightarrow\;\;I_{uv} \;\leq\;I_{uw}
\]
with equality only if $u$ is identically 0.} \hfill\BlackBox
\section{}
\noindent
{\bf Proof}. We use the notation:
\[
P_v(i) \;=\;\frac{N_v^i}{N},\;\;\;i \neq 0;\;\;\;
P_{v0}\;\equiv\;P_v(0)\; = \;1 - \sum_{i\neq 0}P_v(i).
\]
These values represent the (empirical) probabilities of $v$
taking value $i\neq 0$ and 0 respectively. Entropies will be denoted
by $H$. We aim to show that $\fracpartial{I_{uv}}{P_{v0}} < 0$....\\
{\noindent \em Remainder omitted in this sample. See http://www.jmlr.org/papers/ for full paper.}
\vskip 0.2in
\bibliography{sample}
\end{document}