Skip to content

Code for "ALMA: Hierarchical Learning for Composite Multi-Agent Tasks" NeurIPS 2022

License

Notifications You must be signed in to change notification settings

shariqiqbal2810/ALMA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ALMA

Code for ALMA: Hierarchical Learning for Composite Multi-Agent Tasks (Iqbal et al., NeurIPS 2022)

This code is built on the public code release for REFIL which is built on the PyMARL framework

Citing our work

If you use this repo in your work, please consider citing the corresponding paper:

@inproceedings{iqbal2022alma,
title={ALMA: Hierarchical Learning for Composite Multi-Agent Tasks},
author={Shariq Iqbal and Robby Costales and Fei Sha},
booktitle={Advances in Neural Information Processing Systems},
year={2022},
url={https://openreview.net/forum?id=JUXn1vXcrLA}
}

Installation instructions

  1. Install Docker
  2. Install NVIDIA Docker if you want to use GPU (recommended)
  3. Build the docker image using
cd docker
./build.sh
  1. Set up StarCraft II. If installed already on your machine just make sure SC2PATH is set correctly, otherwise run:
./install_sc2.sh
  1. Make sure SC2PATH is set to the installation directory (3rdparty/StarCraftII)
  2. Make sure WANDB_API_KEY is set if you want to use weights and biases

Running experiments

Use the following command to run:

./run.sh <GPU> python3.7 src/main.py \
    --config=<alg> --env-config=<env> --scenario=<scen>

with the bracketed parameters replaced as follows:

  • <GPU>: The index of the GPU you would like to run this experiment on
  • <alg>: The low-level learning algorithm (choices are qmix_atten or refil)
  • <env>: The environment
    • ff: SaveTheCity environment
    • sc2multiarmy: StarCraft environment
  • <scen>: Specifies set of tasks in the environment (for StarCraft)
    • 6-8sz_maxsize4_maxarmies3_symmetric: Stalkers and Zealots Symmetric
    • 6-8sz_maxsize4_maxarmies3_unitdisadvantage: Stalkers and Zealots Disadvantage
    • 6-8MMM_maxsize4_maxarmies3_symmetric: MMM Symmetric
    • 6-8MMM_maxsize4_maxarmies3_unitdisadvantage: MMM Disadvantage

Method-Specific parameters:

  • ALMA: Use --agent.subtask_cond='mask' and --hier_agent.task_allocation='aql'
  • ALMA (No Mask): --agent.subtask_cond='full_obs' and --hier_agent.task_allocation='aql'
  • Heuristic Allocation: Use --agent.subtask_cond='mask' and --hier_agent.task_allocation='heuristic'
    • StarCraft (Dynamic): --env_args.heuristic_style='attacking-type-unassigned-diff'
    • StarCraft (Matching): --env_args.heuristic_style='type-unassigned-diff'
  • COPA: --hier_agent.copa=True

Environment-Specific hyperparameters:

  • SaveTheCity
    • Use --epsilon_anneal_time=2000000 for all methods
    • Use --hier_agent.action_length=5 for hierarchical methods (allocation-based and COPA)
    • Use --config=qmix_atten
  • StarCraft
    • Use --hier_agent.action_length=3 for hierarchical methods (allocation-based and COPA)
    • Use --config=refil

Miscellaneous parameters:

  • Weights and Biases: To use, make a project named "task-allocation" in weights and biases and include the following parameters in your runs. Make sure WANDB_API_KEY is set.
    • --use-wandb=True: Enables W&B logging,
    • --wb-notes: Notes associated with this experiment,
    • --wb-tags Specify list of tags separated by spaces
    • --wb-entity Specify W&B user or group name

About

Code for "ALMA: Hierarchical Learning for Composite Multi-Agent Tasks" NeurIPS 2022

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages