-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenai_api_mlx.py
472 lines (388 loc) · 14.9 KB
/
openai_api_mlx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import os
import gc
import time
import base64
import re
import argparse
from contextlib import asynccontextmanager
from typing import List, Literal, Union, Tuple, Optional
import uvicorn
import mlx
import mlx.core as mx
import mlx_lm
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from loguru import logger
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse
from llava.generate import load_model, prepare_inputs, generate_text
from llava.llava import LlavaModel
from autogen.agentchat.contrib.img_utils import get_image_data, llava_formatter
from autogen.code_utils import content_str
from PIL import Image
from io import BytesIO
@asynccontextmanager
async def lifespan(app: FastAPI):
"""
An asynchronous context manager for managing the lifecycle of the FastAPI app.
It ensures that GPU memory is cleared after the app's lifecycle ends, which is essential for efficient resource management in GPU environments.
"""
yield
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ModelCard(BaseModel):
"""
A Pydantic model representing a model card, which provides metadata about a machine learning model.
It includes fields like model ID, owner, and creation time.
"""
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class ImageUrl(BaseModel):
url: str
class TextContent(BaseModel):
type: Literal["text"]
text: str
class ImageUrlContent(BaseModel):
type: Literal["image_url"]
image_url: ImageUrl
ContentItem = Union[TextContent, ImageUrlContent]
class ChatMessageInput(BaseModel):
role: Literal["user", "assistant", "system"]
content: Union[str, List[ContentItem]]
name: Optional[str] = None
class ChatMessageResponse(BaseModel):
role: Literal["assistant"]
content: str = None
name: Optional[str] = None
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessageInput]
temperature: Optional[float] = 0.8
top_p: Optional[float] = 0.8
max_tokens: Optional[int] = None
stream: Optional[bool] = False
# Additional parameters
repetition_penalty: Optional[float] = 1.0
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessageResponse
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionResponse(BaseModel):
model: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[
Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]
]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: Optional[UsageInfo] = None
@app.get("/v1/models", response_model=ModelList)
async def list_models():
"""
An endpoint to list available models. It returns a list of model cards.
This is useful for clients to query and understand what models are available for use.
"""
model_card_llava = ModelCard(id="llava-1.5-7b-hf")
model_card_cog = ModelCard(
id="cogvlm-chat-17b"
) # can be replaced by your model id like cogagent-chat-18b
return ModelList(data=[model_card_llava, model_card_cog])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer
logger.debug(f"==== model ====\n{request.model}")
if len(request.messages) < 1 or request.messages[-1].role == "assistant":
raise HTTPException(status_code=400, detail="Invalid request")
if "llava" in request.model:
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
)
response = generate_llava(model, gen_params)
elif "cog" in request.model:
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
)
if request.stream:
generate = predict(request.model, gen_params)
return EventSourceResponse(generate, media_type="text/event-stream")
response = generate_cogvlm(model, tokenizer, gen_params)
usage = UsageInfo()
message = ChatMessageResponse(
role="assistant",
content=response["text"],
)
logger.debug(f"==== message ====\n{message}")
choice_data = ChatCompletionResponseChoice(
index=0,
message=message,
)
task_usage = UsageInfo.model_validate(response["usage"])
for usage_key, usage_value in task_usage.model_dump().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return ChatCompletionResponse(
model=request.model,
choices=[choice_data],
object="chat.completion",
usage=usage,
)
async def predict(model_id: str, params: dict):
"""
Handle streaming predictions. It continuously generates responses for a given input stream.
This is particularly useful for real-time, continuous interactions with the model.
"""
global model, tokenizer
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(role="assistant"), finish_reason=None
)
chunk = ChatCompletionResponse(
model=model_id, choices=[choice_data], object="chat.completion.chunk"
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
previous_text = ""
for new_response in generate_stream_cogvlm(model, tokenizer, params):
decoded_unicode = new_response["text"]
delta_text = decoded_unicode[len(previous_text) :]
previous_text = decoded_unicode
delta = DeltaMessage(
content=delta_text,
role="assistant",
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=delta,
)
chunk = ChatCompletionResponse(
model=model_id, choices=[choice_data], object="chat.completion.chunk"
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
)
chunk = ChatCompletionResponse(
model=model_id, choices=[choice_data], object="chat.completion.chunk"
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
def generate_llava(
model: LlavaModel, params: dict
):
"""
Generates a response using the Llava model. It processes the chat history and image data, if any,
and then invokes the model to generate a response.
"""
messages = params["messages"]
temperature = float(params.get("temperature", 1.0))
repetition_penalty = float(params.get("repetition_penalty", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_tokens", 256))
# The formats for LLaVA and CogVLM are different. So, we manually handle them here.
prompt, image_list = process_llava_messages(messages)
logger.debug(f"==== request ====\n{prompt}")
logger.debug(f"==== image ====\n{image_list[-1]}")
if len(image_list) > 0:
input_ids, pixel_values = prepare_inputs(processor, image_list[-1], prompt)
input_echo_len = len(input_ids[0])
total_len = 0
generated_text = ""
generated_text = generate_text(
input_ids, pixel_values, model, processor, max_new_tokens, temperature
)
response = {
"text": generated_text,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len,
},
}
else:
generated_text = "An image input is required!"
response = {
"text": generated_text,
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0,
},
}
return response
def generate_cogvlm(
model, tokenizer, params: dict
):
"""
Generates a response using the CogVLM model. It processes the chat history and image data, if any,
and then invokes the model to generate a response.
"""
for response in generate_stream_cogvlm(model, tokenizer, params):
pass
return response
def process_llava_messages(
messages: List[ChatMessageInput],
) -> Tuple[Optional[str], Optional[List[Image.Image]]]:
"""
Process llava messages to extract prompt, identify the last user query,
and convert base64 encoded image URLs to PIL images.
Args:
messages(List[ChatMessageInput]): List of ChatMessageInput objects.
return: A tuple of three elements:
- The formatted prompt for llava as a string.
- List of PIL Image objects extracted from the messages.
"""
formatted_prompt = ""
image_list = []
# Increment the image count and replace the tag in the prompt
new_token = ""
for i, message in enumerate(messages):
role = message.role
content = message.content
if isinstance(content, list): # text
text_content = " ".join(
item.text for item in content if isinstance(item, TextContent)
)
else:
text_content = content
logger.debug(f"==== text content ====\n{text_content}")
if isinstance(content, list): # image
for item in content:
if isinstance(item, ImageUrlContent):
image_url = item.image_url.url
if re.match("data:image/.+;base64,", image_url):
base64_encoded_image = re.sub(
"data:image/.+;base64,", "", image_url, count=1
)
image_data = base64.b64decode(base64_encoded_image)
image = Image.open(BytesIO(image_data)).convert("RGB")
image_list.append(image)
new_token = "<image>\n"
formatted_prompt += f"{role.upper()}: {new_token}{text_content}</s>"
new_token = ""
formatted_prompt += "ASSISTANT: "
return formatted_prompt, image_list
def process_history_and_images(
messages: List[ChatMessageInput],
) -> Tuple[Optional[str], Optional[List[Tuple[str, str]]], Optional[List[Image.Image]]]:
"""
Process history messages to extract text, identify the last user query,
and convert base64 encoded image URLs to PIL images.
Args:
messages(List[ChatMessageInput]): List of ChatMessageInput objects.
return: A tuple of three elements:
- The last user query as a string.
- Text history formatted as a list of tuples for the model.
- List of PIL Image objects extracted from the messages.
"""
formatted_history = []
image_list = []
last_user_query = ""
for i, message in enumerate(messages):
role = message.role
content = message.content
if isinstance(content, list): # text
text_content = " ".join(
item.text for item in content if isinstance(item, TextContent)
)
else:
text_content = content
if isinstance(content, list): # image
for item in content:
if isinstance(item, ImageUrlContent):
image_url = item.image_url.url
if re.match("data:image/.+;base64,", image_url):
base64_encoded_image = re.sub(
"data:image/.+;base64,", "", image_url, count=1
)
image_data = base64.b64decode(base64_encoded_image)
image = Image.open(BytesIO(image_data)).convert("RGB")
image_list.append(image)
if role == "user":
if i == len(messages) - 1: # 最后一条用户消息
last_user_query = text_content
else:
formatted_history.append((text_content, ""))
elif role == "assistant":
if formatted_history:
if formatted_history[-1][1] != "":
assert (
False
), f"the last query is answered. answer again. {formatted_history[-1][0]}, {formatted_history[-1][1]}, {text_content}"
formatted_history[-1] = (formatted_history[-1][0], text_content)
else:
assert False, f"assistant reply before user"
else:
assert False, f"unrecognized role: {role}"
return last_user_query, formatted_history, image_list
def generate_stream_cogvlm(
model, tokenizer, params: dict
):
"""
Generates a stream of responses using the CogVLM model in inference mode.
It's optimized to handle continuous input-output interactions with the model in a streaming manner.
"""
messages = params["messages"]
temperature = float(params.get("temperature", 1.0))
repetition_penalty = float(params.get("repetition_penalty", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_tokens", 256))
query, history, image_list = process_history_and_images(messages)
logger.debug(f"==== request ====\n{query}")
generated_text = "CogVLM model is not supported with MLX!"
ret = {
"text": generated_text,
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0,
},
}
yield ret
gc.collect()
mx.metal.clear_cache()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="OpenAI API Local Server",
description="",
)
parser.add_argument('--model_path', default="THUDM/cogvlm-chat-hf")
parser.add_argument('-q', '--quant', default=False, action='store_true')
parser.add_argument('--tokenizer_path', default="lmsys/vicuna-7b-v1.5")
args = parser.parse_args()
dtype = mx.float16
print(
"========Use dtype as:{} with MLX========\n\n".format(
dtype
)
)
processor, model = load_model(args.model_path)
uvicorn.run(app, host="0.0.0.0", port=8001, workers=1)