-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain_seldnet.py
394 lines (330 loc) · 21.9 KB
/
train_seldnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#
# A wrapper script that trains the SELDnet. The training stops when the early stopping metric - SELD error stops improving.
#
import os
import sys
import numpy as np
import matplotlib.pyplot as plot
import cls_feature_class
import cls_data_generator
import seldnet_model
import parameters
import time
from time import gmtime, strftime
import torch
import torch.nn as nn
import torch.optim as optim
plot.switch_backend('agg')
from IPython import embed
from cls_compute_seld_results import ComputeSELDResults, reshape_3Dto2D
from SELD_evaluation_metrics import distance_between_cartesian_coordinates
import seldnet_model
def get_accdoa_labels(accdoa_in, nb_classes):
x, y, z = accdoa_in[:, :, :nb_classes], accdoa_in[:, :, nb_classes:2*nb_classes], accdoa_in[:, :, 2*nb_classes:]
sed = np.sqrt(x**2 + y**2 + z**2) > 0.5
return sed, accdoa_in
def get_multi_accdoa_labels(accdoa_in, nb_classes):
"""
Args:
accdoa_in: [batch_size, frames, num_track*num_axis*num_class=3*3*12]
nb_classes: scalar
Return:
sedX: [batch_size, frames, num_class=12]
doaX: [batch_size, frames, num_axis*num_class=3*12]
"""
x0, y0, z0 = accdoa_in[:, :, :1*nb_classes], accdoa_in[:, :, 1*nb_classes:2*nb_classes], accdoa_in[:, :, 2*nb_classes:3*nb_classes]
sed0 = np.sqrt(x0**2 + y0**2 + z0**2) > 0.5
doa0 = accdoa_in[:, :, :3*nb_classes]
x1, y1, z1 = accdoa_in[:, :, 3*nb_classes:4*nb_classes], accdoa_in[:, :, 4*nb_classes:5*nb_classes], accdoa_in[:, :, 5*nb_classes:6*nb_classes]
sed1 = np.sqrt(x1**2 + y1**2 + z1**2) > 0.5
doa1 = accdoa_in[:, :, 3*nb_classes: 6*nb_classes]
x2, y2, z2 = accdoa_in[:, :, 6*nb_classes:7*nb_classes], accdoa_in[:, :, 7*nb_classes:8*nb_classes], accdoa_in[:, :, 8*nb_classes:]
sed2 = np.sqrt(x2**2 + y2**2 + z2**2) > 0.5
doa2 = accdoa_in[:, :, 6*nb_classes:]
return sed0, doa0, sed1, doa1, sed2, doa2
def determine_similar_location(sed_pred0, sed_pred1, doa_pred0, doa_pred1, class_cnt, thresh_unify, nb_classes):
if (sed_pred0 == 1) and (sed_pred1 == 1):
if distance_between_cartesian_coordinates(doa_pred0[class_cnt], doa_pred0[class_cnt+1*nb_classes], doa_pred0[class_cnt+2*nb_classes],
doa_pred1[class_cnt], doa_pred1[class_cnt+1*nb_classes], doa_pred1[class_cnt+2*nb_classes]) < thresh_unify:
return 1
else:
return 0
else:
return 0
def test_epoch(data_generator, model, criterion, dcase_output_folder, params, device):
# Number of frames for a 60 second audio with 100ms hop length = 600 frames
# Number of frames in one batch (batch_size* sequence_length) consists of all the 600 frames above with zero padding in the remaining frames
test_filelist = data_generator.get_filelist()
nb_test_batches, test_loss = 0, 0.
model.eval()
file_cnt = 0
with torch.no_grad():
for data, target in data_generator.generate():
# load one batch of data
data, target = torch.tensor(data).to(device).float(), torch.tensor(target).to(device).float()
# process the batch of data based on chosen mode
output = model(data)
loss = criterion(output, target)
if params['multi_accdoa'] is True:
sed_pred0, doa_pred0, sed_pred1, doa_pred1, sed_pred2, doa_pred2 = get_multi_accdoa_labels(output.detach().cpu().numpy(), params['unique_classes'])
sed_pred0 = reshape_3Dto2D(sed_pred0)
doa_pred0 = reshape_3Dto2D(doa_pred0)
sed_pred1 = reshape_3Dto2D(sed_pred1)
doa_pred1 = reshape_3Dto2D(doa_pred1)
sed_pred2 = reshape_3Dto2D(sed_pred2)
doa_pred2 = reshape_3Dto2D(doa_pred2)
else:
sed_pred, doa_pred = get_accdoa_labels(output.detach().cpu().numpy(), params['unique_classes'])
sed_pred = reshape_3Dto2D(sed_pred)
doa_pred = reshape_3Dto2D(doa_pred)
# dump SELD results to the correspondin file
output_file = os.path.join(dcase_output_folder, test_filelist[file_cnt].replace('.npy', '.csv'))
file_cnt += 1
output_dict = {}
if params['multi_accdoa'] is True:
for frame_cnt in range(sed_pred0.shape[0]):
for class_cnt in range(sed_pred0.shape[1]):
# determine whether track0 is similar to track1
flag_0sim1 = determine_similar_location(sed_pred0[frame_cnt][class_cnt], sed_pred1[frame_cnt][class_cnt], doa_pred0[frame_cnt], doa_pred1[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
flag_1sim2 = determine_similar_location(sed_pred1[frame_cnt][class_cnt], sed_pred2[frame_cnt][class_cnt], doa_pred1[frame_cnt], doa_pred2[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
flag_2sim0 = determine_similar_location(sed_pred2[frame_cnt][class_cnt], sed_pred0[frame_cnt][class_cnt], doa_pred2[frame_cnt], doa_pred0[frame_cnt], class_cnt, params['thresh_unify'], params['unique_classes'])
# unify or not unify according to flag
if flag_0sim1 + flag_1sim2 + flag_2sim0 == 0:
if sed_pred0[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred0[frame_cnt][class_cnt], doa_pred0[frame_cnt][class_cnt+params['unique_classes']], doa_pred0[frame_cnt][class_cnt+2*params['unique_classes']]])
if sed_pred1[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred1[frame_cnt][class_cnt], doa_pred1[frame_cnt][class_cnt+params['unique_classes']], doa_pred1[frame_cnt][class_cnt+2*params['unique_classes']]])
if sed_pred2[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred2[frame_cnt][class_cnt], doa_pred2[frame_cnt][class_cnt+params['unique_classes']], doa_pred2[frame_cnt][class_cnt+2*params['unique_classes']]])
elif flag_0sim1 + flag_1sim2 + flag_2sim0 == 1:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
if flag_0sim1:
if sed_pred2[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred2[frame_cnt][class_cnt], doa_pred2[frame_cnt][class_cnt+params['unique_classes']], doa_pred2[frame_cnt][class_cnt+2*params['unique_classes']]])
doa_pred_fc = (doa_pred0[frame_cnt] + doa_pred1[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']]])
elif flag_1sim2:
if sed_pred0[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred0[frame_cnt][class_cnt], doa_pred0[frame_cnt][class_cnt+params['unique_classes']], doa_pred0[frame_cnt][class_cnt+2*params['unique_classes']]])
doa_pred_fc = (doa_pred1[frame_cnt] + doa_pred2[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']]])
elif flag_2sim0:
if sed_pred1[frame_cnt][class_cnt]>0.5:
output_dict[frame_cnt].append([class_cnt, doa_pred1[frame_cnt][class_cnt], doa_pred1[frame_cnt][class_cnt+params['unique_classes']], doa_pred1[frame_cnt][class_cnt+2*params['unique_classes']]])
doa_pred_fc = (doa_pred2[frame_cnt] + doa_pred0[frame_cnt]) / 2
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']]])
elif flag_0sim1 + flag_1sim2 + flag_2sim0 >= 2:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
doa_pred_fc = (doa_pred0[frame_cnt] + doa_pred1[frame_cnt] + doa_pred2[frame_cnt]) / 3
output_dict[frame_cnt].append([class_cnt, doa_pred_fc[class_cnt], doa_pred_fc[class_cnt+params['unique_classes']], doa_pred_fc[class_cnt+2*params['unique_classes']]])
else:
for frame_cnt in range(sed_pred.shape[0]):
for class_cnt in range(sed_pred.shape[1]):
if sed_pred[frame_cnt][class_cnt]>0.5:
if frame_cnt not in output_dict:
output_dict[frame_cnt] = []
output_dict[frame_cnt].append([class_cnt, doa_pred[frame_cnt][class_cnt], doa_pred[frame_cnt][class_cnt+params['unique_classes']], doa_pred[frame_cnt][class_cnt+2*params['unique_classes']]])
data_generator.write_output_format_file(output_file, output_dict)
test_loss += loss.item()
nb_test_batches += 1
if params['quick_test'] and nb_test_batches == 4:
break
test_loss /= nb_test_batches
return test_loss
def train_epoch(data_generator, optimizer, model, criterion, params, device):
nb_train_batches, train_loss = 0, 0.
model.train()
for data, target in data_generator.generate():
# load one batch of data
data, target = torch.tensor(data).to(device).float(), torch.tensor(target).to(device).float()
optimizer.zero_grad()
# process the batch of data based on chosen mode
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
nb_train_batches += 1
if params['quick_test'] and nb_train_batches == 4:
break
train_loss /= nb_train_batches
return train_loss
def main(argv):
"""
Main wrapper for training sound event localization and detection network.
:param argv: expects two optional inputs.
first input: task_id - (optional) To chose the system configuration in parameters.py.
(default) 1 - uses default parameters
second input: job_id - (optional) all the output files will be uniquely represented with this.
(default) 1
"""
print(argv)
if len(argv) != 3:
print('\n\n')
print('-------------------------------------------------------------------------------------------------------')
print('The code expected two optional inputs')
print('\t>> python seld.py <task-id> <job-id>')
print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
print('Using default inputs for now')
print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
'You can use any number or string for this.')
print('-------------------------------------------------------------------------------------------------------')
print('\n\n')
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
torch.autograd.set_detect_anomaly(True)
# use parameter set defined by user
task_id = '1' if len(argv) < 2 else argv[1]
params = parameters.get_params(task_id)
job_id = 1 if len(argv) < 3 else argv[-1]
# Training setup
train_splits, val_splits, test_splits = None, None, None
if params['mode'] == 'dev':
if '2020' in params['dataset_dir']:
test_splits = [1]
val_splits = [2]
train_splits = [[3, 4, 5, 6]]
elif '2021' in params['dataset_dir']:
test_splits = [6]
val_splits = [5]
train_splits = [[1, 2, 3, 4]]
elif '2022' in params['dataset_dir']:
test_splits = [[4]]
val_splits = [[4]]
train_splits = [[1, 2, 3]]
else:
print('ERROR: Unknown dataset splits')
exit()
for split_cnt, split in enumerate(test_splits):
print('\n\n---------------------------------------------------------------------------------------------------')
print('------------------------------------ SPLIT {} -----------------------------------------------'.format(split))
print('---------------------------------------------------------------------------------------------------')
# Unique name for the run
loc_feat = params['dataset']
if params['dataset'] == 'mic':
if params['use_salsalite']:
loc_feat = '{}_salsa'.format(params['dataset'])
else:
loc_feat = '{}_gcc'.format(params['dataset'])
loc_output = 'multiaccdoa' if params['multi_accdoa'] else 'accdoa'
cls_feature_class.create_folder(params['model_dir'])
unique_name = '{}_{}_{}_split{}_{}_{}'.format(
task_id, job_id, params['mode'], split_cnt, loc_output, loc_feat
)
model_name = '{}_model.h5'.format(os.path.join(params['model_dir'], unique_name))
print("unique_name: {}\n".format(unique_name))
# Load train and validation data
print('Loading training dataset:')
data_gen_train = cls_data_generator.DataGenerator(
params=params, split=train_splits[split_cnt]
)
print('Loading validation dataset:')
data_gen_val = cls_data_generator.DataGenerator(
params=params, split=val_splits[split_cnt], shuffle=False, per_file=True
)
# Collect i/o data size and load model configuration
data_in, data_out = data_gen_train.get_data_sizes()
model = seldnet_model.CRNN(data_in, data_out, params).to(device)
if params['finetune_mode']:
print('Running in finetuning mode. Initializing the model to the weights - {}'.format(params['pretrained_model_weights']))
model.load_state_dict(torch.load(params['pretrained_model_weights'], map_location='cpu'))
print('---------------- SELD-net -------------------')
print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format(data_in, data_out))
print('MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, f_pool_size{}, t_pool_size{}\n\trnn_size: {}, fnn_size: {}\n'.format(
params['dropout_rate'], params['nb_cnn2d_filt'], params['f_pool_size'], params['t_pool_size'], params['rnn_size'],
params['fnn_size']))
print(model)
# Dump results in DCASE output format for calculating final scores
dcase_output_val_folder = os.path.join(params['dcase_output_dir'], '{}_{}_val'.format(unique_name, strftime("%Y%m%d%H%M%S", gmtime())))
cls_feature_class.delete_and_create_folder(dcase_output_val_folder)
print('Dumping recording-wise val results in: {}'.format(dcase_output_val_folder))
# Initialize evaluation metric class
score_obj = ComputeSELDResults(params)
# start training
best_val_epoch = -1
best_ER, best_F, best_LE, best_LR, best_seld_scr = 1., 0., 180., 0., 9999
patience_cnt = 0
nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
optimizer = optim.Adam(model.parameters(), lr=params['lr'])
if params['multi_accdoa'] is True:
criterion = seldnet_model.MSELoss_ADPIT()
else:
criterion = nn.MSELoss()
for epoch_cnt in range(nb_epoch):
# ---------------------------------------------------------------------
# TRAINING
# ---------------------------------------------------------------------
start_time = time.time()
train_loss = train_epoch(data_gen_train, optimizer, model, criterion, params, device)
train_time = time.time() - start_time
# ---------------------------------------------------------------------
# VALIDATION
# ---------------------------------------------------------------------
start_time = time.time()
val_loss = test_epoch(data_gen_val, model, criterion, dcase_output_val_folder, params, device)
# Calculate the DCASE 2021 metrics - Location-aware detection and Class-aware localization scores
val_ER, val_F, val_LE, val_LR, val_seld_scr, classwise_val_scr = score_obj.get_SELD_Results(dcase_output_val_folder)
val_time = time.time() - start_time
# Save model if loss is good
if val_seld_scr <= best_seld_scr:
best_val_epoch, best_ER, best_F, best_LE, best_LR, best_seld_scr = epoch_cnt, val_ER, val_F, val_LE, val_LR, val_seld_scr
torch.save(model.state_dict(), model_name)
# Print stats
print(
'epoch: {}, time: {:0.2f}/{:0.2f}, '
# 'train_loss: {:0.2f}, val_loss: {:0.2f}, '
'train_loss: {:0.4f}, val_loss: {:0.4f}, '
'ER/F/LE/LR/SELD: {}, '
'best_val_epoch: {} {}'.format(
epoch_cnt, train_time, val_time,
train_loss, val_loss,
'{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}'.format(val_ER, val_F, val_LE, val_LR, val_seld_scr),
best_val_epoch, '({:0.2f}/{:0.2f}/{:0.2f}/{:0.2f}/{:0.2f})'.format(best_ER, best_F, best_LE, best_LR, best_seld_scr))
)
patience_cnt += 1
if patience_cnt > params['patience']:
break
# ---------------------------------------------------------------------
# Evaluate on unseen test data
# ---------------------------------------------------------------------
print('Load best model weights')
model.load_state_dict(torch.load(model_name, map_location='cpu'))
print('Loading unseen test dataset:')
data_gen_test = cls_data_generator.DataGenerator(
params=params, split=test_splits[split_cnt], shuffle=False, per_file=True
)
# Dump results in DCASE output format for calculating final scores
dcase_output_test_folder = os.path.join(params['dcase_output_dir'], '{}_{}_test'.format(unique_name, strftime("%Y%m%d%H%M%S", gmtime())))
cls_feature_class.delete_and_create_folder(dcase_output_test_folder)
print('Dumping recording-wise test results in: {}'.format(dcase_output_test_folder))
test_loss = test_epoch(data_gen_test, model, criterion, dcase_output_test_folder, params, device)
use_jackknife=True
test_ER, test_F, test_LE, test_LR, test_seld_scr, classwise_test_scr = score_obj.get_SELD_Results(dcase_output_test_folder, is_jackknife=use_jackknife )
print('\nTest Loss')
print('SELD score (early stopping metric): {:0.2f} {}'.format(test_seld_scr[0] if use_jackknife else test_seld_scr, '[{:0.2f}, {:0.2f}]'.format(test_seld_scr[1][0], test_seld_scr[1][1]) if use_jackknife else ''))
print('SED metrics: Error rate: {:0.2f} {}, F-score: {:0.1f} {}'.format(test_ER[0] if use_jackknife else test_ER, '[{:0.2f}, {:0.2f}]'.format(test_ER[1][0], test_ER[1][1]) if use_jackknife else '', 100* test_F[0] if use_jackknife else 100* test_F, '[{:0.2f}, {:0.2f}]'.format(100* test_F[1][0], 100* test_F[1][1]) if use_jackknife else ''))
print('DOA metrics: Localization error: {:0.1f} {}, Localization Recall: {:0.1f} {}'.format(test_LE[0] if use_jackknife else test_LE, '[{:0.2f} , {:0.2f}]'.format(test_LE[1][0], test_LE[1][1]) if use_jackknife else '', 100*test_LR[0] if use_jackknife else 100*test_LR,'[{:0.2f}, {:0.2f}]'.format(100*test_LR[1][0], 100*test_LR[1][1]) if use_jackknife else ''))
if params['average']=='macro':
print('Classwise results on unseen test data')
print('Class\tER\tF\tLE\tLR\tSELD_score')
for cls_cnt in range(params['unique_classes']):
print('{}\t{:0.2f} {}\t{:0.2f} {}\t{:0.2f} {}\t{:0.2f} {}\t{:0.2f} {}'.format(
cls_cnt,
classwise_test_scr[0][0][cls_cnt] if use_jackknife else classwise_test_scr[0][cls_cnt], '[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][0][cls_cnt][0], classwise_test_scr[1][0][cls_cnt][1]) if use_jackknife else '',
classwise_test_scr[0][1][cls_cnt] if use_jackknife else classwise_test_scr[1][cls_cnt], '[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][1][cls_cnt][0], classwise_test_scr[1][1][cls_cnt][1]) if use_jackknife else '',
classwise_test_scr[0][2][cls_cnt] if use_jackknife else classwise_test_scr[2][cls_cnt], '[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][2][cls_cnt][0], classwise_test_scr[1][2][cls_cnt][1]) if use_jackknife else '',
classwise_test_scr[0][3][cls_cnt] if use_jackknife else classwise_test_scr[3][cls_cnt], '[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][3][cls_cnt][0], classwise_test_scr[1][3][cls_cnt][1]) if use_jackknife else '',
classwise_test_scr[0][4][cls_cnt] if use_jackknife else classwise_test_scr[4][cls_cnt], '[{:0.2f}, {:0.2f}]'.format(classwise_test_scr[1][4][cls_cnt][0], classwise_test_scr[1][4][cls_cnt][1]) if use_jackknife else ''))
if __name__ == "__main__":
try:
sys.exit(main(sys.argv))
except (ValueError, IOError) as e:
sys.exit(e)