-
Notifications
You must be signed in to change notification settings - Fork 3
/
plot_tsne.py
142 lines (102 loc) · 4.38 KB
/
plot_tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import json
import torch
import argparse
from torch.utils.data import Dataset
from multiprocessing import cpu_count
from torch.utils.data import DataLoader
from collections import OrderedDict, defaultdict
import numpy as np
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from model_rep import SentenceVae
from dataset_preproc_scripts.yelp import Yelp
from utils import to_var, idx2word, interpolate, load_model_params_from_checkpoint
def main(args):
if not os.path.exists(args.load_checkpoint):
raise FileNotFoundError(args.load_checkpoint)
saved_dir_name = args.load_checkpoint.split('/')[2]
params_path = './saved_vae_models/'+saved_dir_name+'/model_params.json'
if not os.path.exists(params_path):
raise FileNotFoundError(params_path)
# load params
params = load_model_params_from_checkpoint(params_path)
# create model
model = SentenceVae(**params)
print(model)
model.load_state_dict(torch.load(args.load_checkpoint))
print("Model loaded from %s" % args.load_checkpoint)
if torch.cuda.is_available():
model = model.cuda()
model.eval()
datasets = OrderedDict()
style_tsne_values = np.empty((0, model.style_space_size), int)
content_tsne_values = np.empty((0, model.content_space_size), int)
if(model.dataset == "yelp"):
output_size = 2
print("Using Yelp!")
tsne_labels = np.empty((0, output_size), int)
dataset = Yelp
splits = ['train']
for split in splits:
print("creating dataset for: {}".format(split))
datasets[split] = dataset(
split=split,
)
for split in splits:
# create dataloader
data_loader = DataLoader(
dataset=datasets[split],
batch_size=args.batch_size,
shuffle=split == 'train',
num_workers=cpu_count(),
pin_memory=torch.cuda.is_available()
)
for iteration, batch in enumerate(data_loader):
# get batch size
batch_size = batch['input'].size(0)
for k, v in batch.items():
if torch.is_tensor(v):
batch[k] = to_var(v)
style_z, content_z = model.get_style_content_space(batch['input'])
batch_labels = batch['label'].cpu().detach().numpy()
style_z = style_z.cpu().detach().numpy()
content_z = content_z.cpu().detach().numpy()
style_tsne_values = np.append(style_tsne_values, style_z, axis=0)
content_tsne_values = np.append(content_tsne_values, content_z, axis=0)
tsne_labels = np.append(tsne_labels, batch_labels, axis=0)
if iteration==1000:
break
pca = PCA(n_components = 8)
tsne = TSNE(n_components=2, verbose = 1)
style_pca_result = pca.fit_transform(style_tsne_values)
content_pca_result = pca.fit_transform(content_tsne_values)
style_tsne_results = tsne.fit_transform(style_pca_result[:])
content_tsne_results = tsne.fit_transform(content_pca_result[:])
#plot style
color_map = np.argmax(tsne_labels, axis=1)
plt.figure(figsize=(10,10))
for cl in range(output_size):
indices = np.where(color_map==cl)
indices = indices[0]
plt.scatter(style_tsne_results[indices,0], style_tsne_results[indices, 1], label=cl)
plt.legend()
plt.savefig('./experiments/'+model.dataset+'-style-tsne.png')
#plot content
color_map = np.argmax(tsne_labels, axis=1)
plt.figure(figsize=(10,10))
for cl in range(output_size):
indices = np.where(color_map==cl)
indices = indices[0]
plt.scatter(content_tsne_results[indices,0], content_tsne_results[indices, 1], label=cl)
plt.legend()
plt.savefig('./experiments/'+model.dataset+'-content-tsne.png')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--load_checkpoint', type=str)
parser.add_argument('-n', '--num_samples', type=int, default=10)
parser.add_argument('-bs', '--batch_size', type=int, default=32)
parser.add_argument('-dd', '--data_dir', type=str, default='data')
args = parser.parse_args()
main(args)