-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchainreac-with-comment.java
795 lines (742 loc) · 29.4 KB
/
chainreac-with-comment.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
// probably final copy //
//package chain.reaction;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.function.Function;
import javafx.util.Pair;
/**
* A game playing bot for Chain Reaction. Takes as input an array of
* {@link Board#BOARD_SIZE}*{@link Board#BOARD_SIZE}. Each cell is represented
* by (ORB_COUNT,PLAYER). Takes time = {@link MinMax#TIME_OUT} to return an
* answer.
*
* @author Shamiul Hasan
*/
public class ChainReaction {
static String[][] grid;
static int[][][] board;
static int rowNum, colmNum;
static String player_color;
public static String[][] read_file() throws FileNotFoundException, IOException {
File file = new File("shared_file.txt");
FileReader fr = new FileReader(file);
BufferedReader br = new BufferedReader(fr);
String[][] board = new String[8][8];
if (file.length() == 0) {
fr.close();
br.close();
return null;
}
String color = br.readLine();
// System.out.println(color + " " + player_color);
if (color != null && color.equalsIgnoreCase(player_color)) {
for (int i = 0; i < rowNum; i++) {
String line = br.readLine();
String[] arr = line.split(" ");
// System.out.println("Arr = ");
for (int j = 0; j < colmNum; j++) {
// System.out.print(arr[j] + " ");
board[i][j] = arr[j];
}
// System.out.println("");
}
fr.close();
br.close();
return board;
}
fr.close();
br.close();
return null;
}
public static void print() {
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
System.out.print(grid[i][j] + " ");
}
System.out.println("");
}
}
public static Pair<Integer, Integer> select_move(int player_id) throws FileNotFoundException {
while (true) {
int x, y;
final MinMax minMax = new MinMax();
String ans = minMax.iterativeSearchForBestMove(board, player_id);
String xy[] = ans.split(" ");
x = Integer.parseInt(xy[0]);
y = Integer.parseInt(xy[1]);
if (grid[x][y].equalsIgnoreCase("No") || grid[x][y].charAt(0) == player_color.charAt(0)) {
System.out.println("x = " + x + " y = " + y);
return new Pair<>(x, y);
}
}
}
public static void write_move(Pair<Integer, Integer> p) throws FileNotFoundException {
PrintWriter writer = new PrintWriter("shared_file.txt");
writer.println("0");
writer.println(p.getKey() + " " + p.getValue());
writer.close();
}
public static void main(String[] args) throws IOException, InterruptedException {
rowNum = colmNum = 8;
grid = new String[rowNum][colmNum];
player_color = args[0];
// player_color = "G";
while (true) {
while (true) {
grid = read_file();
if (grid != null) {
break;
}
TimeUnit.SECONDS.sleep((long) 0.01);
}
board = new int[rowNum][colmNum][3];
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[i].length; j++) {
char player = grid[i][j].charAt(0);
char orb_count = grid[i][j].charAt(1);
int player_id = 0, count = 0;
if (player == 'G') {
player_id = 1;
} else if (player == 'R') {
player_id = 2;
}
count = orb_count - '0';
// board[i][j][0] = player_id;
// board[i][j][1] = count;
board[i][j][1] = player_id;
board[i][j][0] = count;
}
}
int my_player_id ;
if(player_color.equalsIgnoreCase("R"))
{
my_player_id = 2;
}
else {
my_player_id = 1;
}
// select_move(my_player_id);
Pair<Integer, Integer> p = select_move(my_player_id);
write_move(p);
}
}
}
/**
* Contains a lot of objects for metrics. Should ideally be separated from those responsibilities.
*/
class MinMax {
private static final int MAX_DEPTH = 60;
public static int TIME_OUT = 1280;
public int computations = 0, depth = 4, moves = 0;
public long eval = 0;
static final int MAX_VALUE = 1000000, MIN_VALUE = -MAX_VALUE;
private final long startTime = System.currentTimeMillis();
private boolean test;
private Configuration[] startConfigs;
private final Move[][] killerMoves = new Move[MAX_DEPTH][2];
private final int[][] efficiency = new int[MAX_DEPTH][2];
private boolean nullSearchActivated = false;
public MinMax() {
Board.setMoves();
Board.setNeighbours();
}
private boolean timeOut;
/**
* Iterative deepening is implemented for flexible depth search. Also, it allows us to rearrange all moves as per
* (known) optimal ordering after each iteration. This is important because alpha-beta
* performs best when given a good move order.
* On the final iteration, when an exception is thrown, the best move will be propagated upwards from the
* {@link #findBestMove} method.
*/
public String iterativeSearchForBestMove(final int[][][] game, final int player) {
final Board board = new Board(game);
if (board.choices[player] + board.choices[0] == 0) {
throw new RuntimeException("No possible moves");
}
startConfigs = new Configuration[board.choices[player] + board.choices[0]];
for (int i = 0; i < board.choices[0]; i++) {
startConfigs[i] = new Configuration(board.moves[0][i], board, player, 0, false);
}
for (int i = 0; i < board.choices[player]; i++) {
startConfigs[i + board.choices[0]] = new Configuration(board.moves[player][i], board, player, 0, false);
}
Arrays.sort(startConfigs);
Move bestMove = startConfigs[0].move;
while (depth < MAX_DEPTH && !timeOut) {
bestMove = findBestMove(player, 0);
depth++;
}
eval = startConfigs[0].strength;
moves = board.choices[player] + board.choices[0];
return bestMove.describe();
}
/**
* Returns the best known move till now for the entire board.
*
* @param player Player to play
* @param level Current Level
* @return Best move found
*/
private Move findBestMove(final int player, final int level) {
long toTake = MIN_VALUE, toGive = MAX_VALUE;
int max = MIN_VALUE;
Move bestMove = startConfigs[0].move;
try {
for (final Configuration possibleConfig : startConfigs) {
final int moveValue = evaluate(possibleConfig.board.getCopy(),
flip(player),
level,
toTake,
toGive,
-possibleConfig.strength,
false);
possibleConfig.strength = moveValue;
if (player == 1) {
if (toTake < moveValue) {
toTake = moveValue;
}
} else {
if (toGive > -moveValue) {
toGive = -moveValue;
}
}
if (moveValue > max) {
max = moveValue;
bestMove = possibleConfig.move;
if (Math.abs(max - MAX_VALUE) <= 100) {
break;
}
}
if (toTake >= toGive) {
if (possibleConfig.killer) {
if (killerMoves[level][0] == possibleConfig.move) {
efficiency[level][0]++;
} else {
efficiency[level][1]++;
if (efficiency[level][0] < efficiency[level][1]) {
final Move temp = killerMoves[level][0];
killerMoves[level][0] = killerMoves[level][1];
killerMoves[level][1] = temp;
}
}
} else {
if (killerMoves[level][0] == null) {
killerMoves[level][0] = possibleConfig.move;
efficiency[level][0] = 1;
} else if (killerMoves[level][1] == null) {
killerMoves[level][1] = possibleConfig.move;
efficiency[level][1] = 1;
}
}
break;
} else if (possibleConfig.killer) {
if (killerMoves[level][0] == possibleConfig.move) {
efficiency[level][0]--;
} else {
efficiency[level][1]--;
}
if (efficiency[level][0] < efficiency[level][1]) {
final Move temp = killerMoves[level][0];
killerMoves[level][0] = killerMoves[level][1];
killerMoves[level][1] = temp;
}
if (efficiency[level][1] <= 0) {
efficiency[level][1] = 0;
killerMoves[level][1] = null;
}
}
}
} catch (TimeoutException e) {
timeOut = true;
}
Arrays.sort(startConfigs);
return bestMove;
}
/**
* Min Max tree generator and traverse. Implements Alpha Beta along with the killer heuristic.
*
* @param board Input Board. All branches in the Min Max Tree from this node are possible moves from this board.
* @param player Player making the move.
* @param level Depth on which this tree is now.
* @param a Alpha
* @param b Beta
* @param heuristicValue The heuristic value of board
* @param isNullSearch Specifies if the current search had a null move in it
* @return The value of current board position
* @throws TimeoutException if it runs out of time.
*/
private int evaluate(final Board board,
final int player,
final int level,
final long a,
final long b,
final int heuristicValue,
final boolean isNullSearch) throws TimeoutException {
long toTake = a, toGive = b;
int max = MIN_VALUE;
if (!test && System.currentTimeMillis() - startTime >= TIME_OUT) {
throw new TimeoutException("Time out...");
}
final Integer terminalValue;
if ((terminalValue = board.terminalValue()) != null) {
max = terminalValue * ((-player << 1) + 3);
max += max < 0 ? level : -level;
} else if (level >= depth) {
max = heuristicValue;
} else {
final Configuration[] configurations = new Configuration[board.choices[player] + board.choices[0]];
for (int i = 0; i < board.choices[0]; i++) {
configurations[i] = new Configuration(board.moves[0][i], board, player, level, isNullSearch);
}
for (int i = 0; i < board.choices[player]; i++) {
configurations[i + board.choices[0]] = new Configuration(board.moves[player][i],
board,
player,
level,
isNullSearch);
}
Arrays.sort(configurations);
int index = 0;
for (; index < configurations.length; index++) {
final Configuration possibleConfig = configurations[index];
computations++;
if (nullSearchActivated && !isNullSearch && isNotEndGame(possibleConfig)) {
final int nullMoveValue = -evaluate(possibleConfig.board,
player,
level + 3,
player == 1 ? toTake : toGive - 1,
player == 1 ? toTake + 1 : toGive,
possibleConfig.strength,
true);
if (player == 1) {
if (nullMoveValue <= toTake) {
if (nullMoveValue > max) {
max = nullMoveValue;
}
continue;
}
} else {
if (-nullMoveValue >= toGive) {
if (nullMoveValue > max) {
max = nullMoveValue;
}
continue;
}
}
}
final int moveValue = evaluate(possibleConfig.board,
flip(player),
level + 1,
toTake,
toGive,
-possibleConfig.strength,
isNullSearch);
if (player == 1) {
if (toTake < moveValue) {
toTake = moveValue;
}
} else {
if (toGive > -moveValue) {
toGive = -moveValue;
}
}
if (moveValue > max) {
max = moveValue;
if (Math.abs(max - MAX_VALUE) <= 100) {
break;
}
}
if (toTake >= toGive) {
max = moveValue;
if (possibleConfig.killer) {
if (killerMoves[level][0] == possibleConfig.move) {
efficiency[level][0]++;
} else {
efficiency[level][1]++;
if (efficiency[level][0] < efficiency[level][1]) {
final Move temp = killerMoves[level][0];
killerMoves[level][0] = killerMoves[level][1];
killerMoves[level][1] = temp;
}
}
} else {
if (killerMoves[level][0] == null) {
killerMoves[level][0] = possibleConfig.move;
efficiency[level][0] = 1;
} else if (killerMoves[level][1] == null) {
killerMoves[level][1] = possibleConfig.move;
efficiency[level][1] = 1;
}
}
break;
} else if (possibleConfig.killer) {
if (killerMoves[level][0] == possibleConfig.move) {
efficiency[level][0]--;
} else {
efficiency[level][1]--;
}
if (efficiency[level][0] < efficiency[level][1]) {
final Move temp = killerMoves[level][0];
killerMoves[level][0] = killerMoves[level][1];
killerMoves[level][1] = temp;
}
if (efficiency[level][1] <= 0) {
efficiency[level][1] = 0;
killerMoves[level][1] = null;
}
}
}
}
return -max;
}
private boolean isNotEndGame(Configuration configuration) {
return configuration.board.choices[0] > 5;
}
/**
* A board and move combination.
*/
private class Configuration implements Comparable<Configuration> {
final Move move;
final Board board;
/**
* Represents how good the move is for the player making the move
*/
int strength;
/**
* True only if the move is considered a 'killer' move as per the killer heuristic.
*/
final boolean killer;
private Configuration(final Move move,
final Board board,
final int player,
final int level,
boolean resultsFromNullSearch) {
final Move moveToBeMade = Board.ALL_MOVES[player][move.x][move.y];
this.board = board.makeMove(moveToBeMade);
if (!resultsFromNullSearch && killerMoves[level][0] == moveToBeMade || killerMoves[level][1] == moveToBeMade) {
killer = true;
} else {
this.strength = this.board.heuristicValue(player);
killer = false;
}
this.move = moveToBeMade;
}
@Override
public int compareTo(Configuration o) {
if (killer && o.killer) {
return 0;
} else if (!killer && o.killer) {
return +1;
} else if (killer) {
return -1;
}
return o.strength - strength;
}
@Override
public String toString() {
return "Configuration{" +
"move=" + move +
", board=" + board +
'}';
}
}
static int flip(final int player) {
return ~player & 3;
}
public void setTest(boolean test) {
this.test = test;
}
}
/**
* Represents a move on the board.
*/
class Move {
final int x, y, player;
Move(final int x, final int y, final int player) {
this.x = x;
this.y = y;
this.player = player;
}
String describe() {
return x + " " + y;
}
@Override
public String toString() {
return "Move{" +
"x=" + x +
", y=" + y +
", player=" + player +
'}';
}
}
/**
* A representation of the board as bit array would be better. Some analysis states that only 7 configurations are
* possible for each cell:
* <p>
* Config Orbs Player
* <p>
* 0 0 0
* <p>
* 1 1 1
* <p>
* 2 2 1
* <p>
* 3 3 1
* <p>
* 4 1 2
* <p>
* 5 2 2
* <p>
* 6 3 2
* <p>
* So each board cell can be represented by log(7) base 2 => 3 bits. As there are 25 cells in a 5*5 board, each board
* should require just 75 bits, or three integers.
* However, due to performance and complexity considerations, I believe 4 bits per position is better. 2 for player
* info and 2 for orb count. The practical reality was that none of these considerations worked well enough to reach
* the final submission. However, if the bugs were fewer and I had more time, this was a good place to work on
* efficiency.
*/
class Board {
Function<int[], Integer> heuristicEval = (vals) -> Arrays.stream(vals).sum();
int[][][] board;
private static final int BOARD_SIZE = 8;
private static final int neighbours[][][] = new int[BOARD_SIZE][BOARD_SIZE][];
private static final int PLAYERS = 2;
final Move[][] moves = new Move[PLAYERS][BOARD_SIZE * BOARD_SIZE];
final int[] choices = new int[PLAYERS];
static final Move ALL_MOVES[][][] = new Move[PLAYERS][BOARD_SIZE][BOARD_SIZE];
/**
* Creates a new board using the given board array to initialize move lists and counters.
*
* @param board the game board
*/
Board(final int[][][] board) {
for (int i = 0; i < BOARD_SIZE; i++) {
for (int j = 0; j < BOARD_SIZE; j++) {
moves[board[i][j][0]][choices[board[i][j][0]]++] = ALL_MOVES[board[i][j][0]][i][j];
}
}
this.board = getCopy(board);
}
/**
* Completely copies a board onto another.
*
* @param board Original Board
* @param moves Original Move list
* @param choices Original Player Cell counter
*/
private Board(final int[][][] board, final Move[][] moves, final int choices[]) {
System.arraycopy(choices, 0, this.choices, 0, choices.length);
for (int i = 0; i < PLAYERS; i++) {
System.arraycopy(moves[i], 0, this.moves[i], 0, choices[i]);
}
this.board = getCopy(board);
}
/**
* Sets all the neighbours of each possible cell in the chain reaction board. This method runs only once for each
* game.
*/
static void setNeighbours() {
for (int i = 0; i < BOARD_SIZE; i++) {
for (int j = 0; j < BOARD_SIZE; j++) {
final long x = i * BOARD_SIZE + j;
final List<Long> near = new ArrayList<>();
near.add(x + 1);
near.add(x + BOARD_SIZE);
near.add(x - 1);
near.add(x - BOARD_SIZE);
if (i == 0) {
near.remove(x - BOARD_SIZE);
}
if (j == 0) {
near.remove(x - 1);
}
if (i == BOARD_SIZE - 1) {
near.remove(x + BOARD_SIZE);
}
if (j == BOARD_SIZE - 1) {
near.remove(x + 1);
}
neighbours[i][j] = new int[near.size()];
for (int k = 0; k < near.size(); k++) {
if (near.get(k) >= 0 && near.get(k) <= BOARD_SIZE * BOARD_SIZE) {
neighbours[i][j][k] = Math.toIntExact(near.get(k));
}
}
}
}
}
/**
* Make a move returning a new board. Method <b>is</b> idempotent.
*
* @param move Move to be played
* @return New board with move played.
*/
Board makeMove(final Move move) {
return getCopy().play(move);
}
/**
* Plays a move on the current board, updating the state and respective variables. If it looks complicated, thats
* because it is.
*
* @param move The move played on the board.
* @return The changed board. This operation is <b>NOT</b> idempotent.
*/
private Board play(final Move move) {
if (board[move.x][move.y][0] == MinMax.flip(move.player)) {
//We just captured an opponents block. Updating move list and counters
final int opponent = MinMax.flip(move.player);
int index;
for (index = choices[opponent] - 1; index >= 0; index--) {
if (moves[opponent][index].x == move.x && moves[opponent][index].y == move.y) {
break;
}
}
moves[opponent][index] = moves[opponent][choices[opponent] - 1];
choices[opponent]--;
moves[move.player][choices[move.player]++] = ALL_MOVES[move.player][move.x][move.y];
} else if (board[move.x][move.y][0] == 0) {
//We just captured an an empty block. Updating move list and counters
int index;
for (index = choices[0] - 1; index >= 0; index--) {
if (moves[0][index].x == move.x && moves[0][index].y == move.y) {
break;
}
}
moves[0][index] = moves[0][choices[0] - 1];
choices[0]--;
moves[move.player][choices[move.player]++] = ALL_MOVES[move.player][move.x][move.y];
}
//Else we played in our own cell. No updates needed, except to increment cell count as always
board[move.x][move.y][0] = move.player;
board[move.x][move.y][1]++;
if (terminalValue() != null) {
return this;
}
/*
* Checks if an explosion needed.
*/
if (neighbours[move.x][move.y].length <= board[move.x][move.y][1]) {
board[move.x][move.y][1] = board[move.x][move.y][1] - neighbours[move.x][move.y].length;
if (board[move.x][move.y][1] == 0) {
//Set he cell to blank and update move lists
board[move.x][move.y][0] = 0;
int index;
for (index = choices[move.player] - 1; index >= 0; index--) {
if (moves[move.player][index].x == move.x && moves[move.player][index].y == move.y) {
break;
}
}
moves[move.player][index] = moves[move.player][choices[move.player] - 1];
choices[move.player]--;
moves[0][choices[0]++] = ALL_MOVES[0][move.x][move.y];
}
explode(move.x, move.y, move.player);
}
return this;
}
/**
* Explode the cell at the specified position. All neighbouring cells are acted upon as if a move was played on
* them.
*
* @param x X coordinate
* @param y Y coordinate
* @param player Player who caused the explosion
*/
private void explode(final int x, final int y, final int player) {
for (final int neighbour : neighbours[x][y]) {
play(ALL_MOVES[player][neighbour / BOARD_SIZE][neighbour % BOARD_SIZE]);
}
}
/**
* Used to check if the given board position is terminal.
*
* @return An integer value if the position is a terminal position. Else return null.
*/
Integer terminalValue() {
if (((choices[1] | choices[2]) > 1) && (choices[1] == 0 || choices[2] == 0)) {
return choices[1] == 0 ? MinMax.MIN_VALUE : MinMax.MAX_VALUE;
} else {
return null;
}
}
@Override
public String toString() {
return Arrays.deepToString(board);
}
/**
* It takes the difference in number of cells and add the difference in explosives.
*
* @param player Player to move
* @return Heuristic value of the board
*/
int heuristicValue(final int player) {
final int opponent = MinMax.flip(player);
int orbs = choices[player] - choices[opponent];
int explosives = 0;
for (int m = 0; m < choices[player]; m++) {
final int i = moves[player][m].x;
final int j = moves[player][m].y;
if (board[i][j][1] == neighbours[i][j].length - 1) {
explosives++;
}
}
for (int m = 0; m < choices[opponent]; m++) {
final int i = moves[opponent][m].x;
final int j = moves[opponent][m].y;
if (board[i][j][1] == neighbours[i][j].length - 1) {
explosives--;
}
}
return orbs + explosives;
}
/**
* Returns a copy of the board state. Skips copying the zeros of the original.
*
* @param board The original board representation
* @return A new board array having all the copied elements
*/
private int[][][] getCopy(final int board[][][]) {
// final int copyBoard[][][] = new int[board.length][board.length][2];
final int copyBoard[][][] = new int[board.length][board.length][3];
// for (int k = 1; k < PLAYERS; k++) {
for (int k = 0; k < PLAYERS; k++) {
for (int l = 0; l < choices[k]; l++) {
final int i = moves[k][l].x;
final int j = moves[k][l].y;
// System.out.println(board[i][j].length + " " + copyBoard[i][j].length);
System.arraycopy(board[i][j], 0, copyBoard[i][j], 0, board[i][j].length);
}
}
return copyBoard;
}
/**
* Initializes the moves array with static objects. These are the only move objects created in the entire game.
*/
static void setMoves() {
for (int player = 0; player < PLAYERS; player++) {
for (int i = 0; i < BOARD_SIZE; i++) {
for (int j = 0; j < BOARD_SIZE; j++) {
ALL_MOVES[player][i][j] = new Move(i, j, player);
}
}
}
}
/**
* Necessary to keep the preserve the state of the board when searching in the min-max tree.
*
* @return A copy of the board. The copy refers to none of the mutable objects being referred to by the original.
*/
Board getCopy() {
return new Board(board, moves, choices);
}
}