diff --git a/python/sglang/srt/layers/rotary_embedding.py b/python/sglang/srt/layers/rotary_embedding.py index 9e30c6f9ea9..c819543181e 100644 --- a/python/sglang/srt/layers/rotary_embedding.py +++ b/python/sglang/srt/layers/rotary_embedding.py @@ -890,6 +890,43 @@ def forward( return query_out.type_as(query), key_out.type_as(key) +class DynamicNTKAlphaRotaryEmbedding(RotaryEmbedding): + """RotaryEmbedding extended with Dynamic NTK scaling. + + Credits to the Reddit users /u/bloc97 and /u/emozilla + """ + + def __init__( + self, + head_size: int, + rotary_dim: int, + max_position_embeddings: int, + base: int, + is_neox_style: bool, + scaling_alpha: float, + dtype: torch.dtype, + ) -> None: + self.scaling_alpha = scaling_alpha + super().__init__( + head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype + ) + + def _compute_cos_sin_cache(self) -> torch.Tensor: + max_len = self.max_position_embeddings + base = self.base * self.scaling_alpha ** ( + self.rotary_dim / (self.rotary_dim - 2) + ) + + inv_freq = self._compute_inv_freq(base) + t = torch.arange(max_len, dtype=torch.float) + + freqs = torch.einsum("i,j -> ij", t, inv_freq) + cos = freqs.cos() + sin = freqs.sin() + cache = torch.cat((cos, sin), dim=-1) + return cache + + class MRotaryEmbedding(RotaryEmbedding): """Rotary Embedding with Multimodal Sections.""" @@ -1234,15 +1271,26 @@ def get_rope( ) elif scaling_type == "dynamic": scaling_factor = rope_scaling["factor"] - rotary_emb = DynamicNTKScalingRotaryEmbedding( - head_size, - rotary_dim, - max_position, - base, - is_neox_style, - scaling_factor, - dtype, - ) + if "alpha" in rope_scaling: + rotary_emb = DynamicNTKAlphaRotaryEmbedding( + head_size, + rotary_dim, + max_position, + base, + is_neox_style, + rope_scaling["alpha"], + dtype, + ) + else: + rotary_emb = DynamicNTKScalingRotaryEmbedding( + head_size, + rotary_dim, + max_position, + base, + is_neox_style, + scaling_factor, + dtype, + ) elif scaling_type == "yarn": scaling_factor = rope_scaling["factor"] original_max_position = rope_scaling["original_max_position_embeddings"] diff --git a/python/sglang/srt/models/hunyuan.py b/python/sglang/srt/models/hunyuan.py new file mode 100644 index 00000000000..00300bed54a --- /dev/null +++ b/python/sglang/srt/models/hunyuan.py @@ -0,0 +1,771 @@ +# coding=utf-8 +# Copyright 2024 The HunYuan team. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Inference-only HunYuan model compatible with HuggingFace weights.""" +import logging +import re +from dataclasses import dataclass +from enum import Enum, auto +from typing import Any, Dict, Iterable, List, Optional, Tuple, Union + +import torch +from torch import nn +from transformers import PretrainedConfig + +from sglang.srt.distributed import ( + get_pp_group, + get_tensor_model_parallel_rank, + get_tensor_model_parallel_world_size, + tensor_model_parallel_all_reduce, +) +from sglang.srt.layers.activation import SiluAndMul +from sglang.srt.layers.layernorm import RMSNorm +from sglang.srt.layers.linear import ( + ColumnParallelLinear, + MergedColumnParallelLinear, + QKVParallelLinear, + ReplicatedLinear, + RowParallelLinear, +) +from sglang.srt.layers.logits_processor import LogitsProcessor +from sglang.srt.layers.moe.fused_moe_triton import FusedMoE +from sglang.srt.layers.quantization.base_config import QuantizationConfig +from sglang.srt.layers.radix_attention import RadixAttention +from sglang.srt.layers.rotary_embedding import get_rope +from sglang.srt.layers.sampler import Sampler +from sglang.srt.layers.vocab_parallel_embedding import ( + DEFAULT_VOCAB_PADDING_SIZE, + ParallelLMHead, + VocabParallelEmbedding, +) +from sglang.srt.managers.expert_distribution import ExpertDistributionRecorder +from sglang.srt.model_executor.forward_batch_info import ForwardBatch +from sglang.srt.model_loader.weight_utils import ( + default_weight_loader, + kv_cache_scales_loader, + maybe_remap_kv_scale_name, +) +from sglang.srt.utils import add_prefix, is_hip + +expert_distribution_recorder = ExpertDistributionRecorder() + + +def _is_moe(config: PretrainedConfig) -> bool: + if getattr(config, "num_experts", None) and ( + (isinstance(config.num_experts, int) and config.num_experts > 1) + or (isinstance(config.num_experts, list) and max(config.num_experts) > 1) + ): + return True + else: + return False + + +def _get_cla_factor(config: PretrainedConfig) -> int: + if not getattr(config, "use_cla", False): + return 1 + return getattr(config, "cla_share_factor", 1) + + +class HunYuanMLP(nn.Module): + + def __init__( + self, + hidden_size: int, + intermediate_size: int, + hidden_act: str, + quant_config: Optional[QuantizationConfig] = None, + bias: bool = False, + prefix: str = "", + reduce_results: bool = True, + ) -> None: + super().__init__() + self.gate_up_proj = MergedColumnParallelLinear( + input_size=hidden_size, + output_sizes=[intermediate_size] * 2, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.gate_up_proj", + ) + self.down_proj = RowParallelLinear( + input_size=intermediate_size, + output_size=hidden_size, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.down_proj", + reduce_results=reduce_results, + ) + if hidden_act != "silu": + raise ValueError( + f"Unsupported activation: {hidden_act}. " + "Only silu is supported for now." + ) + self.act_fn = SiluAndMul() + + def forward(self, x): + gate_up, _ = self.gate_up_proj(x) + x = self.act_fn(gate_up) + x, _ = self.down_proj(x) + return x + + +class HunYuanSparseMoeBlock(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + quant_config: Optional[QuantizationConfig] = None, + layer_id: int = -1, + ): + super().__init__() + self.tp_size = get_tensor_model_parallel_world_size() + + if self.tp_size > config.num_experts: + raise ValueError( + f"Tensor parallel size {self.tp_size} is greater than " + f"the number of experts {config.num_experts}." + ) + + # Get layer_id topk if config.moe_topk is a list + if isinstance(config.moe_topk, list): + assert layer_id >= 0 + assert len(config.moe_topk) > layer_id + top_k = config.moe_topk[layer_id] + else: + top_k = config.moe_topk + + # If it is moe, moe_intermediate_size is preferred + intermediate_size = config.intermediate_size + if config.moe_intermediate_size is not None: + intermediate_size = ( + config.moe_intermediate_size + if isinstance(config.moe_intermediate_size, int) + else config.moe_intermediate_size[layer_id] + ) + + self.experts = FusedMoE( + num_experts=config.num_experts, + top_k=top_k, + hidden_size=config.hidden_size, + intermediate_size=intermediate_size, + reduce_results=False, + renormalize=True if top_k > 1 else False, + quant_config=quant_config, + ) + + self.gate = ReplicatedLinear( + config.hidden_size, config.num_experts, bias=False, quant_config=None + ) + if config.use_mixed_mlp_moe > 0: + # Get layer_id num_shared_expert if config.num_shared_expert is a list + if isinstance(config.num_shared_expert, list): + assert layer_id >= 0 + assert len(config.num_shared_expert) > layer_id + num_shared_expert = config.num_shared_expert[layer_id] + else: + num_shared_expert = config.num_shared_expert + + self.shared_mlp = HunYuanMLP( + hidden_size=config.hidden_size, + intermediate_size=config.intermediate_size * num_shared_expert, + hidden_act=config.hidden_act, + quant_config=quant_config, + reduce_results=False, + ) + else: + self.shared_mlp = None + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # NOTE: hidden_states can have either 1D or 2D shape. + orig_shape = hidden_states.shape + hidden_dim = hidden_states.shape[-1] + hidden_states = hidden_states.view(-1, hidden_dim) + shared_output = None + if self.shared_mlp is not None: + shared_output = self.shared_mlp(hidden_states) + + # router_logits: (num_tokens, n_experts) + router_logits, _ = self.gate(hidden_states) + final_hidden_states = self.experts( + hidden_states=hidden_states, router_logits=router_logits + ) + if shared_output is not None: + final_hidden_states = final_hidden_states + shared_output + if self.tp_size > 1: + final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states) + + return final_hidden_states.view(orig_shape) + + +class HunYuanAttention(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + hidden_size: int, + num_heads: int, + num_kv_heads: int, + rope_theta: float = 10000, + rope_scaling: Optional[Dict[str, Any]] = None, + max_position_embeddings: int = 8192, + quant_config: Optional[QuantizationConfig] = None, + bias: bool = False, + prefix: str = "", + attention_type: str = "self", + layer_id: int = -1, + ) -> None: + super().__init__() + self.hidden_size = hidden_size + tp_size = get_tensor_model_parallel_world_size() + self.total_num_heads = num_heads + assert self.total_num_heads % tp_size == 0 + self.num_heads = self.total_num_heads // tp_size + self.total_num_kv_heads = num_kv_heads + if self.total_num_kv_heads >= tp_size: + # Number of KV heads is greater than TP size, so we partition + # the KV heads across multiple tensor parallel GPUs. + assert self.total_num_kv_heads % tp_size == 0 + else: + # Number of KV heads is less than TP size, so we replicate + # the KV heads across multiple tensor parallel GPUs. + assert tp_size % self.total_num_kv_heads == 0 + self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) + # MistralConfig has an optional head_dim introduced by Mistral-Nemo + self.head_dim = getattr( + config, "head_dim", self.hidden_size // self.total_num_heads + ) + self.q_size = self.num_heads * self.head_dim + self.kv_size = self.num_kv_heads * self.head_dim + self.scaling = self.head_dim**-0.5 + self.rope_theta = rope_theta + self.max_position_embeddings = max_position_embeddings + self.use_qk_norm = getattr(config, "use_qk_norm", False) + self.attention_type = attention_type + self.layer_id = layer_id + + if attention_type == "self": + self.qkv_proj = QKVParallelLinear( + hidden_size=hidden_size, + head_size=self.head_dim, + total_num_heads=self.total_num_heads, + total_num_kv_heads=self.total_num_kv_heads, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.qkv_proj", + ) + elif attention_type == "cross": + self.q_proj = ColumnParallelLinear( + hidden_size, + hidden_size, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.q_proj", + ) + else: + raise RuntimeError("Not support attnention type") + + self.o_proj = RowParallelLinear( + input_size=self.total_num_heads * self.head_dim, + output_size=hidden_size, + bias=bias, + quant_config=quant_config, + prefix=f"{prefix}.o_proj", + ) + + is_neox_style = True + if quant_config is not None and quant_config.get_name() == "gguf": + is_neox_style = False + + self.rotary_emb = get_rope( + self.head_dim, + rotary_dim=self.head_dim, + max_position=max_position_embeddings, + base=rope_theta, + rope_scaling=rope_scaling, + is_neox_style=is_neox_style, + ) + self.attn = RadixAttention( + self.num_heads, + self.head_dim, + self.scaling, + num_kv_heads=self.num_kv_heads, + layer_id=layer_id, + prefix=f"{prefix}.attn", + ) + + if self.use_qk_norm: + self.query_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps) + self.key_layernorm = RMSNorm(self.head_dim, eps=config.rms_norm_eps) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + forward_batch: ForwardBatch, + kv_states: Optional[Tuple[torch.Tensor]] = None, + ) -> torch.Tensor: + if self.attention_type == "self": + qkv, _ = self.qkv_proj(hidden_states) + q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) + q, k = self.rotary_emb(positions, q, k) + ori_k = k + if self.use_qk_norm: + # q = self.query_layernorm(q.view(-1, self.num_heads, self.head_dim).contiguous()) + # k = self.key_layernorm(k.view(-1, self.num_kv_heads, self.head_dim).contiguous()) + q = self.query_layernorm(q.reshape(-1, self.head_dim).contiguous()) + k = self.key_layernorm(k.reshape(-1, self.head_dim).contiguous()) + elif self.attention_type == "cross": + assert kv_states is not None + ori_k, v = kv_states # use last layer kv, + k = ori_k + q, _ = self.q_proj(hidden_states) + k_tmp = torch.empty_like(k) # Todo: reduant rotary embedding + q, _ = self.rotary_emb(positions, q, k_tmp) + if self.use_qk_norm: + q = self.query_layernorm( + q.view(-1, self.num_heads, self.head_dim).contiguous() + ) + k = self.key_layernorm( + k.view(-1, self.num_kv_heads, self.head_dim).contiguous() + ) + else: + raise RuntimeError("Not support attnention type") + + attn_output = self.attn(q, k, v, forward_batch) + output, _ = self.o_proj(attn_output) + return output, (ori_k, v) + + +class HunYuanDecoderLayer(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + quant_config: Optional[QuantizationConfig] = None, + prefix: str = "", + layer_id: int = -1, + ) -> None: + super().__init__() + assert layer_id >= 0 + self.layer_id = layer_id + self.hidden_size = config.hidden_size + self.intermediate_size = ( + config.intermediate_size + if isinstance(config.intermediate_size, int) + else config.intermediate_size[layer_id] + ) + rope_theta = getattr(config, "rope_theta", 10000) + rope_scaling = getattr(config, "rope_scaling", None) + if rope_scaling is not None and getattr( + config, "original_max_position_embeddings", None + ): + rope_scaling["original_max_position_embeddings"] = ( + config.original_max_position_embeddings + ) + max_position_embeddings = getattr(config, "max_position_embeddings", 8192) + # Support abacusai/Smaug-72B-v0.1 with attention_bias + # Support internlm/internlm-7b with bias + attention_bias = getattr(config, "attention_bias", False) or getattr( + config, "bias", False + ) + cla_factor = _get_cla_factor(config) + attention_type = ( + "cross" if layer_id >= 0 and layer_id % cla_factor != 0 else "self" + ) + self.self_attn = HunYuanAttention( + config=config, + hidden_size=self.hidden_size, + num_heads=config.num_attention_heads, + num_kv_heads=getattr( + config, "num_key_value_heads", config.num_attention_heads + ), + rope_theta=rope_theta, + rope_scaling=rope_scaling, + max_position_embeddings=max_position_embeddings, + quant_config=quant_config, + bias=attention_bias, + prefix=f"{prefix}.self_attn", + attention_type=attention_type, + layer_id=layer_id, + ) + if _is_moe(config): + self.mlp = HunYuanSparseMoeBlock( + config=config, + quant_config=quant_config, + layer_id=layer_id, + ) + else: + self.mlp = HunYuanMLP( + hidden_size=self.hidden_size, + intermediate_size=self.intermediate_size, + hidden_act=config.hidden_act, + quant_config=quant_config, + bias=getattr(config, "mlp_bias", False), + prefix=f"{prefix}.mlp", + ) + self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + forward_batch: ForwardBatch, + residual: Optional[torch.Tensor], + kv_states: Optional[Tuple[torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + # Self Attention + if residual is None: + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + else: + hidden_states, residual = self.input_layernorm(hidden_states, residual) + hidden_states, ori_kv_states = self.self_attn( + positions=positions, + hidden_states=hidden_states, + forward_batch=forward_batch, + kv_states=kv_states, + ) + + # Fully Connected + hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) + hidden_states = self.mlp(hidden_states) + return hidden_states, residual, ori_kv_states + + +class HunYuanModel(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + quant_config: Optional[QuantizationConfig] = None, + prefix: str = "", + ) -> None: + super().__init__() + self.config = config + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + self.org_vocab_size = config.vocab_size + + self.embed_tokens = VocabParallelEmbedding( + self.vocab_size, + config.hidden_size, + ) + + self.layers = nn.ModuleList( + [ + HunYuanDecoderLayer( + config=config, + layer_id=layer_id, + quant_config=quant_config, + # prefix=prefix + ) + for layer_id in range(config.num_hidden_layers) + ] + ) + + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: + return self.embed_tokens(input_ids) + + def forward( + self, + input_ids: Optional[torch.Tensor], + positions: torch.Tensor, + forward_batch: ForwardBatch, + input_embeds: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + if input_embeds is not None: + hidden_states = input_embeds + else: + hidden_states = self.get_input_embeddings(input_ids) + residual = None + + cla_factor = _get_cla_factor(self.config) + prev_kv_states = None + for i in range(len(self.layers)): + layer = self.layers[i] + hidden_states, residual, kv_states = layer( + positions, + hidden_states, + forward_batch, + residual, + prev_kv_states, + ) + + if False: # (i - self.start_layer) % cla_factor == 0: + prev_kv_states = kv_states + else: + prev_kv_states = None + + hidden_states, _ = self.norm(hidden_states, residual) + return hidden_states + + +class HunYuanMoEV1ForCausalLM(nn.Module): + packed_modules_mapping = { + "qkv_proj": [ + "q_proj", + "k_proj", + "v_proj", + ], + "gate_up_proj": [ + "gate_proj", + "up_proj", + ], + } + + embedding_modules = { + "embed_tokens": "input_embeddings", + "lm_head": "output_embeddings", + } + embedding_padding_modules = ["lm_head"] + bitsandbytes_stacked_params_mapping = { + # shard_name, weight_name, index + "q_proj": ("qkv_proj", 0), + "k_proj": ("qkv_proj", 1), + "v_proj": ("qkv_proj", 2), + "gate_proj": ("gate_up_proj", 0), + "up_proj": ("gate_up_proj", 1), + } + + def __init__( + self, + config: PretrainedConfig, + quant_config: Optional[QuantizationConfig] = None, + ) -> None: + super().__init__() + + self.config = config + + self.model = HunYuanModel(config, quant_config, prefix="model") + self.unpadded_vocab_size = config.vocab_size + self.lm_head = ParallelLMHead( + config.vocab_size, + config.hidden_size, + quant_config=quant_config, + ) + if config.tie_word_embeddings: + self.lm_head.weight = self.model.embed_tokens.weight + + logit_scale = getattr(config, "logit_scale", 1.0) + self.logits_processor = LogitsProcessor(config, logit_scale=logit_scale) + self.sampler = Sampler() + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + forward_batch: ForwardBatch, + input_embeds: torch.Tensor = None, + ) -> torch.Tensor: + hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) + return self.logits_processor( + input_ids, hidden_states, self.lm_head, forward_batch + ) + + def _split_qkv_weight(self, qkv: torch.Tensor): + num_attention_heads = self.config.num_attention_heads + num_kv_heads = getattr( + self.config, "num_key_value_heads", self.config.num_attention_heads + ) + num_key_value_groups = num_attention_heads // num_kv_heads + hidden_size = self.config.hidden_size + attention_head_dim = self.config.hidden_size // num_attention_heads + + qkv = qkv.reshape( + num_kv_heads, num_key_value_groups + 2, attention_head_dim, hidden_size + ) + q, k, v = torch.split(qkv, (num_key_value_groups, 1, 1), dim=1) + q = q.reshape(-1, hidden_size) + k = k.reshape(-1, hidden_size) + v = v.reshape(-1, hidden_size) + return torch.concat((q, k, v)) + # return qkv.reshape((num_kv_heads, num_key_value_groups+2 , attention_head_dim, hidden_size)).permute((1,0,2,3)).reshape((-1, hidden_size)), + + def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): + cla_factor = _get_cla_factor(self.config) + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + (".qkv_proj", ".q_proj", "q"), + (".qkv_proj", ".k_proj", "k"), + (".qkv_proj", ".v_proj", "v"), + (".gate_up_proj", ".gate_proj", 0), + (".gate_up_proj", ".up_proj", 1), + ] + + num_attention_heads = self.config.num_attention_heads + num_kv_heads = getattr( + self.config, "num_key_value_heads", self.config.num_attention_heads + ) + split_params_mapping = [ + (".gate_up_proj", ".gate_and_up_proj", 2, [(1, 1), (0, 1)], None), + ( + ".qkv_proj", + ".qkv_proj", + num_attention_heads + num_kv_heads * 2, + [("q", num_attention_heads), ("k", num_kv_heads), ("v", num_kv_heads)], + self._split_qkv_weight, + ), + ] + + if _is_moe(self.config): + # Params for weights, fp8 weight scales, fp8 activation scales + # (param_name, weight_name, expert_id, shard_id) + expert_params_mapping = FusedMoE.make_expert_params_mapping( + ckpt_gate_proj_name="gate_proj", + ckpt_down_proj_name="down_proj", + ckpt_up_proj_name="up_proj", + num_experts=self.config.num_experts, + ) + else: + expert_params_mapping = {} + + params_dict = dict(self.named_parameters()) + for name, loaded_weight in weights: + if "rotary_emb.inv_freq" in name: + continue + if "gate_proj_bias" in name: + name = name.replace("gate_proj_bias", "gate_proj.bias") + if "up_proj_bias" in name: + name = name.replace("up_proj_bias", "up_proj.bias") + if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: + # Models trained using ColossalAI may include these tensors in + # the checkpoint. Skip them. + continue + # With tie_word_embeddings, we can skip lm_head.weight + # The weight might appear unnecessarily in the files if the model is + # processed with quantization, LoRA, fine-tuning, etc. + if self.config.tie_word_embeddings and "lm_head.weight" in name: + continue + + is_found = False + for param_name, weight_name, shard_id in stacked_params_mapping: + if weight_name not in name: + continue + if "mlp.experts" in name: + continue + # cross layer only have q_proj, skip qkv pack + if weight_name == ".q_proj": + match = re.search(r"layers\.\d+", name) + if match: + layer_id = int(match.group(0).split(".")[-1]) + if cla_factor > 1 and layer_id % cla_factor != 0: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, loaded_weight, shard_id) + + is_found = True + break + if is_found: + continue + + for param_name, weight_name, den, split_param, func in split_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + + assert loaded_weight.shape[0] % den == 0 + units = loaded_weight.shape[0] // den + + param = params_dict[name] + weight_loader = param.weight_loader + offset = 0 + for shard_id, num in split_param: + new_offset = offset + num * units + if func: + weight_loader( + param, func(loaded_weight)[offset:new_offset], shard_id + ) + else: + weight_loader(param, loaded_weight[offset:new_offset], shard_id) + offset = new_offset + + break + else: + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + for mapping in expert_params_mapping: + param_name, weight_name, expert_id, shard_id = mapping + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip layers on other devices. + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader( + param, + loaded_weight, + name, + shard_id=shard_id, + expert_id=expert_id, + ) + break + else: + # Remapping the name of FP8 kv-scale. + name = maybe_remap_kv_scale_name(name, params_dict) + if name is None: + continue + + if "mlp.gate.wg." in name: + name = name.replace("wg.", "") + + param = params_dict[name] + weight_loader = getattr( + param, "weight_loader", default_weight_loader + ) + weight_loader(param, loaded_weight) + + # If this function is called, it should always initialize KV cache scale + # factors (or else raise an exception). Thus, handled exceptions should + # make sure to leave KV cache scale factors in a known good (dummy) state + def load_kv_cache_scales(self, quantization_param_path: str) -> None: + tp_size = get_tensor_model_parallel_world_size() + tp_rank = get_tensor_model_parallel_rank() + for layer_idx, scaling_factor in kv_cache_scales_loader( + quantization_param_path, + tp_rank, + tp_size, + self.config.num_hidden_layers, + self.config.__class__.model_type, + ): + if not isinstance(self.model.layers[layer_idx], nn.Identity): + layer_self_attn = self.model.layers[layer_idx].self_attn + + if is_hip(): + # The scaling factor convention we are assuming is + # quantized_value * scaling_factor ~= true_value + # which is consistent with the practice of setting + # scaling_factor = tensor_amax / FPtype_max + scaling_factor *= 2 + if hasattr(layer_self_attn, "kv_scale"): + layer_self_attn.attn._kv_scale = scaling_factor + else: + raise RuntimeError( + "Self attention has no KV cache scaling " "factor attribute!" + ) + + +EntryClass = HunYuanMoEV1ForCausalLM