Skip to content
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 16 additions & 9 deletions python/sglang/srt/models/idefics2.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,23 +296,30 @@ def get_input_embeddings(self) -> nn.Embedding:
def compute_cu_seqlens(
self,
tgt_sizes: Optional[torch.Tensor] = None,
atch_attention_mask: Optional[torch.BoolTensor] = None,
input_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# shape: (batch_size,)
if tgt_sizes is not None:
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
seqlen = tgt_sizes[:, 0] * tgt_sizes[:, 1]
elif input_embeds is not None:
seqlen = torch.full(
size=(input_embeds.shape[0],),
fill_value=input_embeds.shape[1],
dtype=torch.int32,
device=input_embeds.device,
)
else:
patch_len = atch_attention_mask[:, :, 0].sum(dim=1) * atch_attention_mask[
:, 0, :
].sum(dim=1)
raise ValueError(
"Either `tgt_sizes` or `input_embeds` must be provided to compute cu_seqlens."
)

cu_seqlens = torch.cat(
[
torch.tensor([0], device=patch_len.device, dtype=torch.int32),
torch.cumsum(patch_len, dim=0, dtype=torch.int32),
torch.tensor([0], device=seqlen.device, dtype=torch.int32),
torch.cumsum(seqlen, dim=0, dtype=torch.int32),
],
dim=0,
).to(patch_len.device)
).to(seqlen.device)
return cu_seqlens

def forward(
Expand All @@ -326,7 +333,7 @@ def forward(
patch_attention_mask=patch_attention_mask,
tgt_sizes=tgt_sizes,
)
cu_seqlens = self.compute_cu_seqlens(tgt_sizes, patch_attention_mask)
cu_seqlens = self.compute_cu_seqlens(tgt_sizes, hidden_states)
encoder_outputs = self.encoder(
hidden_states,
cu_seqlens=cu_seqlens,
Expand Down
Loading