diff --git a/python/sglang/README.md b/python/sglang/README.md index 0234973816e..e077924033c 100644 --- a/python/sglang/README.md +++ b/python/sglang/README.md @@ -1,5 +1,6 @@ # Code Structures +- `eval`: The evaluation utilities. - `lang`: The frontend language. - `srt`: The backend engine for running local models. (SRT = SGLang Runtime). - `test`: The test utilities. @@ -11,6 +12,5 @@ - `check_env.py`: Check the environment variables and dependencies. - `global_config.py`: The global configs and constants. - `launch_server.py`: The entry point for launching the local server. -- `llama3_eval.py`: Evaluation of Llama 3 using the Meta Llama dataset. - `utils.py`: Common utilities. - `version.py`: Version info. diff --git a/python/sglang/llama3_eval.py b/python/sglang/eval/llama3_eval.py similarity index 100% rename from python/sglang/llama3_eval.py rename to python/sglang/eval/llama3_eval.py diff --git a/python/sglang/eval/loogle_eval.py b/python/sglang/eval/loogle_eval.py new file mode 100644 index 00000000000..250f47a7b5d --- /dev/null +++ b/python/sglang/eval/loogle_eval.py @@ -0,0 +1,157 @@ +import argparse +import asyncio +import os +import pickle +from pathlib import Path +from typing import List + +import openai +import torch +from bert_score import BERTScorer +from datasets import load_dataset +from tqdm import tqdm + + +def get_client(api_url: str) -> openai.AsyncOpenAI: + if os.getenv("OPENAI_API_KEY") is None: + os.environ["OPENAI_API_KEY"] = "EMPTY" + return openai.AsyncOpenAI(base_url=api_url) + + +def get_dataset(): + return load_dataset("bigai-nlco/LooGLE", "longdep_qa", split="test") + + +async def fetch_response( + client: openai.AsyncOpenAI, + context: str, + question: str, + semaphore: asyncio.Semaphore, + index: int, + model: str, + output_dir: Path, +): + output_file = output_dir / f"response_{index}.pkl" + if output_file.exists(): + return + + prompt = ( + "Please answer the question based on the long texts below.\n" + f"{context}\n" + f"Question: {question}\n" + "Answer:" + ) + messages = [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": prompt}, + ] + + async with semaphore: + try: + response = await client.chat.completions.create( + model=model, + messages=messages, + temperature=0.0, + max_tokens=512, + ) + except openai.BadRequestError as e: + with open(output_file, "wb") as f: + pickle.dump({"error": str(e)}, f) + return + + with open(output_file, "wb") as f: + pickle.dump(response, f) + + +async def benchmark(args): + dataset = get_dataset() + output_dir = Path(args.output_dir) + output_dir.mkdir(parents=True, exist_ok=True) + + client = get_client(args.api_url) + semaphore = asyncio.Semaphore(args.max_concurrency) + + tasks: List[asyncio.Task] = [] + for idx, ex in enumerate(dataset): + tasks.append( + asyncio.create_task( + fetch_response( + client, + ex["context"], + ex["question"], + semaphore, + idx, + args.model, + output_dir, + ) + ) + ) + + for _ in tqdm( + asyncio.as_completed(tasks), total=len(tasks), desc="Running benchmark" + ): + await _ + + +def analyse(args): + dataset = get_dataset() + output_dir = Path(args.output_dir) + + device = "cuda" if torch.cuda.is_available() else "cpu" + scorer = BERTScorer(lang="en", device=device) + + hyps: List[str] = [] + refs: List[str] = [] + for idx, ex in enumerate(tqdm(dataset, desc="Loading responses")): + pkl_file = output_dir / f"response_{idx}.pkl" + if not pkl_file.exists(): + raise FileNotFoundError(pkl_file) + + response = pickle.load(open(pkl_file, "rb")) + if isinstance(response, dict) and "error" in response: + continue + + hyps.append(response.choices[0].message.content.strip()) + refs.append(ex["answer"]) + + if not hyps: + print("No valid responses to score!") + return + + batch_size = 64 + all_f1: List[float] = [] + for i in tqdm(range(0, len(hyps), batch_size), desc="Scoring batches"): + h_batch = hyps[i : i + batch_size] + r_batch = refs[i : i + batch_size] + _, _, f1_scores = scorer.score(h_batch, r_batch, verbose=False) + all_f1.extend([float(x) for x in f1_scores]) + + avg = sum(all_f1) / len(all_f1) + print(f"Average BERTScore (F1): {avg:.2%}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="Run benchmark and evaluation in one go." + ) + parser.add_argument( + "--api-url", + default="http://127.0.0.1:30000/v1", + help="OpenAI‑compatible API base URL", + ) + parser.add_argument( + "--model", + default="meta-llama/Llama-4-Maverick-17B-128E-Instruct", + help="Model name or ID", + ) + parser.add_argument( + "--max-concurrency", type=int, default=144, help="Maximum concurrent requests" + ) + parser.add_argument( + "--output-dir", default="tmp-output-dir", help="Directory for cached responses" + ) + args = parser.parse_args() + + asyncio.run(benchmark(args)) + + analyse(args)