-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathContents.m
156 lines (156 loc) · 8.06 KB
/
Contents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Contents in G.Sfikas library ('sfikasLibrary') %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Update I: 24 Feb 2009
% Last update : 20 Jul 2009
%
% Not included in this list:
% /edgemap (Martin)
% /edgemap/superpixels (Yi Ma)
% /lightspeed (Minka)
% /AnalyzeToolbox (Medical imaging toolbox)
% /mixtureLearning/nombre (Ipse, u.c.)
%
%
% =========================================================================
% / General functions
% =========================================================================
%
% buildRetrievalIndex Creates a list of all files of a given
% extension contained on a given folder
% (including its subfolders).
% deterministicKmeans A set of centroids is returned for the
% given dataset, found using k-means. The
% initialization depends on the data, hence
% the name 'deterministic'.
% multistartKmeans Use several random initializations for
% k-means.
% gaussianValue Computes the value of a normal distribution
% for a given datum or set of data.
% studentValue Computes the value of a Student-t
% distribution for a given datum of set of
% data.
% logGaussianValue Compute the log of "gaussianValue" (more
% stable)
% logStudentValue Compute the log of "studentValue" (more
% stable)
% mahalanobis Compute the mahalanobis norm for a set of
% vectors. i.e X'*inv(A)*X (note the inv on
% the A)
% squaredist Compute X'A*X, like 'mahanalobis'.
% makeMovie Show the contents of a 3d image (eg, an
% MRI) as an AVI movie file.
% model2image & seg2image Change the extension and path of a given file.
% lab2rgb & rgb2lab Convert (X,Y,3) matrices from lab to rgb
% and from rgb to lab.
% xrgb2lab An old version of rgb2lab. May be required
% by some old code.
% randGmm Samples from a GMM.
% imnoiseSNR Add noise to given signal.
% Noise strengh is entered either
% in decibels or noise variance.
% medoid Compute medoid out of set of vectors.
% imRAG Compute adjacency graph for a K-class
% image.
%
% =========================================================================
% /matrixManipulation
% =========================================================================
%
% convertJxN Converts a (X,Y,J)-sized to a (J,X*Y)
% matrix. Useful if you want to pass data to
% some training algorithm.
% convolution2D Convolutes a (X,Y)-sized matrix with a 2d
% kernel.
% maxVote Use a maximum-vote 3x3 filter on input
% segmentation.
% smoothUsingVariantScale Smooth an image using gaussian kernels of
% spatially variant scale.
% translation Translate (move) a 2d matrix by a given
% offset.
%
% =========================================================================
% /mixtureLearning
% =========================================================================
%
% gaussianMixEmFit Learn a Gaussian MM.
% studentMixEmFit Learn a Student-t MM.
% gaussianMixGreedyEmFit Learn a Gaussian MM using Greedy EM.
% studentMixGreedyEmFit Learn a Student-t MM using Greedy EM.
% VARIATIONAL/ Variation methodology applications
% gaussianMixBayesian Learn a Gaussian MM with priors.
% studentMixBayesian Learn a Student-t MM with priors on all
% parameters except for the degrees of
% freedom.
% studentMixBayesianXP Learn a Student-t MM with priors on all
% parameters except for the degrees of
% freedom _and_ the weights.
% MARKOV/
% gaussianMixBayesianContinuousLp
% Learn a model with continuous line process.
% (CVPR08 proposal)
% gaussianMixBayesianLp Learn a model with discrete line process.
% (MICCAI08 proposal)
% gaussianMixDCASV Learn a model with class- and directional-
% adaptive priors (Nikou07 TIP paper)
%
% NOMBRE/
% gaussianMixNombre
% Learn a model which uses a spatial MRF
% and can find the number of classes
% automatically
% gaussianMixNombre2 Same as "gaussianMixNombre" - but without
% automatic number of classes selection
% (ie almost like "gaussianMixContinuousLp")
% gaussianMixNombre3 Same as "gaussianMixNombre" - but without
% an MRF incorporated
% (ie almost like "gaussianMixBayesian")
% =========================================================================
% /pdfDistances
% =========================================================================
%
% bhgmmDistance Bhatacharryya-based distance for GMMs.
% emdDistance Earth movers distance.
% kullbackDistance Symmetric kullback-liebler distance.
% l2Distance L2 distance for GMMs. [Sfikas04]
% mahalanobisDistance Quadratic distance for blobworld region
% descriptors.
%
% =========================================================================
% /segmentation
% =========================================================================
%
% buildSegmentation Builds a segmentation for given 2D image,
% using a variety of methods.
% BoundaryDetectionError
% GlobalConsistencyError
% probabilisticRandIndex
% RandIndex Fast version of 'probabilisticRandIndex'.
% VariationOfInformation
%
% =========================================================================
% /texture
% =========================================================================
%
% MRF_texture_features Compute MRF texture feature vectors,
% by default 8-variate.
% computeBlobworldFeatureVectors Compute Blobworld feature vectors,
% ie smooth Lab, Pol-Ani-Con
% and x-y. (8-variate).
%
% =========================================================================
% /mexRoutines
% =========================================================================
%
% BIDProjection Project input vector 'x' onto space
% sum(x) = 1 && x > 0.
% Currently uses method presented in
% Sfikas et al [MLSP workshop 09]
% Formerly the one in
% Blekas et al [TIP 05]
% xConjugateProjection Deprecated. A failed attempt for
% a better projection, for the same
% problem treated by BIDProjection.
%
%