-
Notifications
You must be signed in to change notification settings - Fork 9
/
neuron.hpp
213 lines (195 loc) · 5.53 KB
/
neuron.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//| This file is a part of the sferes2 framework.
//| Copyright 2009, ISIR / Universite Pierre et Marie Curie (UPMC)
//| Main contributor(s): Jean-Baptiste Mouret, [email protected]
//|
//| This software is a computer program whose purpose is to facilitate
//| experiments in evolutionary computation and evolutionary robotics.
//|
//| This software is governed by the CeCILL license under French law
//| and abiding by the rules of distribution of free software. You
//| can use, modify and/ or redistribute the software under the terms
//| of the CeCILL license as circulated by CEA, CNRS and INRIA at the
//| following URL "http://www.cecill.info".
//|
//| As a counterpart to the access to the source code and rights to
//| copy, modify and redistribute granted by the license, users are
//| provided only with a limited warranty and the software's author,
//| the holder of the economic rights, and the successive licensors
//| have only limited liability.
//|
//| In this respect, the user's attention is drawn to the risks
//| associated with loading, using, modifying and/or developing or
//| reproducing the software by the user in light of its specific
//| status of free software, that may mean that it is complicated to
//| manipulate, and that also therefore means that it is reserved for
//| developers and experienced professionals having in-depth computer
//| knowledge. Users are therefore encouraged to load and test the
//| software's suitability as regards their requirements in conditions
//| enabling the security of their systems and/or data to be ensured
//| and, more generally, to use and operate it in the same conditions
//| as regards security.
//|
//| The fact that you are presently reading this means that you have
//| had knowledge of the CeCILL license and that you accept its terms.
#ifndef NN_NEURON_HPP
#define NN_NEURON_HPP
#include <boost/graph/properties.hpp>
#include "trait.hpp"
namespace nn {
// generic neuron
// Pot : potential functor (see pf.hpp)
// Act : activation functor (see af.hpp)
// IO : type of coupling between "neurons" (float or std::pair<float, float>)
template<typename Pot, typename Act, typename IO = float>
class Neuron {
public:
typedef typename Pot::weight_t weight_t;
typedef IO io_t;
typedef Pot pf_t;
typedef Act af_t;
static io_t zero() {
return trait<IO>::zero();
}
Neuron() :
_current_output(zero()),
_next_output(zero()),
_fixed(false),
_in(-1),
_out(-1) {
}
bool get_fixed() const {
return _fixed;
}
void set_fixed(bool b = true) {
_fixed = b;
}
io_t activate() {
if (!_fixed)
_next_output = _af(_pf(_inputs));
return _next_output;
}
void init() {
_pf.init();
_af.init();
if (get_in_degree() != 0)
_inputs = trait<io_t>::zero(get_in_degree());
_current_output = zero();
_next_output = zero();
}
void set_input(unsigned i, const io_t& in) {
assert(i < _inputs.size());
_inputs[i] = in;
}
void set_weight(unsigned i, const weight_t& w) {
_pf.set_weight(i, w);
}
typename af_t::params_t& get_afparams() {
return _af.get_params();
}
typename pf_t::params_t& get_pfparams() {
return _pf.get_params();
}
const typename af_t::params_t& get_afparams() const {
return _af.get_params();
}
const typename pf_t::params_t& get_pfparams() const {
return _pf.get_params();
}
void set_afparams(const typename af_t::params_t& p) {
_af.set_params(p);
}
void set_pfparams(const typename pf_t::params_t& p) {
_pf.set_params(p);
}
void step() {
_current_output = _next_output;
}
void set_in_degree(unsigned k) {
_pf.set_nb_weights(k);
_inputs.resize(k);
if (k == 0)
return;
_inputs = trait<io_t>::zero(k);
}
unsigned get_in_degree() const {
return _pf.get_weights().size();
}
// for input neurons
void set_current_output(const io_t& v) {
_current_output = v;
}
void set_next_output(const io_t& v) {
_next_output = v;
}
// standard output
const io_t& get_current_output() const {
return _current_output;
}
// next output
const io_t& get_next_output() const {
return _next_output;
}
// i/o
int get_in() const {
return _in;
}
void set_in(int i) {
_in = i;
}
int get_out() const {
return _out;
}
void set_out(int o) {
_out = o;
}
bool is_input() const {
return _in != -1;
}
bool is_output() const {
return _out != -1;
}
const Pot& get_pf() const {
return _pf;
}
Pot& get_pf() {
return _pf;
}
const Act& get_af() const {
return _af;
}
Act& get_af() {
return _af;
}
void set_id(const std::string& s) {
_id = s;
}
const std::string& get_id() const {
return _id;
}
const std::string& get_label() const {
return _label;
}
// for graph algorithms
std::string _id;
std::string _label;
boost::default_color_type _color;
int _index;
protected:
// activation functor
Act _af;
// potential functor
Pot _pf;
// outputs
io_t _current_output;
io_t _next_output;
// cache
typename trait<io_t>::vector_t _inputs;
// fixed = current_output is constant
bool _fixed;
// -1 if not an input of the nn, id of input otherwise
int _in;
// -1 if not an output of the nn, id of output otherwise
int _out;
};
}
#endif